Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nanotechnology ; 35(19)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38316054

RESUMEN

We demonstrate the selective area growth of InGaAs nanowires (NWs) on GaAs (111)B substrates using hydride vapor phase epitaxy (HVPE). A high growth rate of more than 50µm h-1and high aspect ratio NWs were obtained. Composition along the NWs was investigated by energy dispersive x-ray spectroscopy giving an average indium composition of 84%. This is consistent with the composition of 78% estimated from the photoluminescence spectrum of the NWs. Crystal structure analysis of the NWs by transmission electron microscopy indicated random stacking faults related to zinc-blende/wurtzite polytypism. This work demonstrates the ability of HVPE for growing high aspect ratio InGaAs NW arrays.

2.
Nano Lett ; 21(23): 9922-9929, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34788993

RESUMEN

Integration of high-quality semiconductor-superconductor devices into scalable and complementary metal-oxide-semiconductor compatible architectures remains an outstanding challenge, currently hindering their practical implementation. Here, we demonstrate growth of InAs nanowires monolithically integrated on Si inside lateral cavities containing superconducting TiN elements. This technique allows growth of hybrid devices characterized by sharp semiconductor-superconductor interfaces and with alignment along arbitrary crystallographic directions. Electrical characterization at low temperature reveals proximity induced superconductivity in InAs via a transparent interface.

3.
Nanotechnology ; 32(7): 075605, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33252055

RESUMEN

Metastable wurtzite crystal phases of conventional semiconductors comprise enormous potential for high-performance electro-optical devices, owed to their extended tunable direct band gap range. However, synthesizing these materials in good quality and beyond nanowire size constraints has remained elusive. In this work, the epitaxy of wurtzite InP microdisks and related geometries on insulator for advanced optical applications is explored. This is achieved by an elaborate combination of selective area growth of fins and a zipper-induced epitaxial lateral overgrowth, which enables co-integration of diversely shaped crystals at precise position. The grown material possesses high phase purity and excellent optical quality characterized by STEM and µ-PL. Optically pumped lasing at room temperature is achieved in microdisks with a lasing threshold of 365 µJ cm-2. Our platform could provide novel geometries for photonic applications.

4.
Nano Lett ; 20(1): 686-693, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31834808

RESUMEN

Metastable crystal phases of abundant semiconductors such as III-Vs, Si, or Ge comprise enormous potential to address current limitations in green light-emitting electrical diodes (LEDs) and group IV photonics. At the same time, these nonconventional polytypes benefit from the chemical similarity to their stable counterparts, which enables the reuse of established processing technology. One of the main challenges is the very limited availability and the small crystal sizes that have been obtained so far. In this work, we explore the limitations of wurtzite (WZ) film epitaxy on the example of InP. We develop a novel method to switch and maintain a metastable phase during a metal-organic vapor phase epitaxy process based on epitaxial lateral overgrowth and compare it with standard selective area epitaxy techniques. We achieve unprecedented large WZ layer dimensions exceeding 100 µm2 and prove their phase purity both by optical as well as structural characterization. On the basis of our observations, we further develop a nucleation-based model and argue on a fundamental size limitation of WZ film growth. Our findings may pave the way toward crystal phase engineered LEDs for highly efficient lighting and display applications.

5.
Nano Lett ; 20(12): 8768-8772, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33216555

RESUMEN

Photonic crystal (PhC) cavities are promising candidates for Si photonics integrated circuits due to their ultrahigh quality (Q)-factors and small mode volumes. Here, we demonstrate a novel concept of a one-dimensional hybrid III-V/Si PhC cavity which exploits a combination of standard silicon-on-insulator technology and active III-V materials. Using template-assisted selective epitaxy, the central part of a Si PhC lattice is locally replaced with III-V gain material. The III-V material is placed to overlap with the maximum of the cavity mode field profile, while keeping the major part of the PhC in Si. The selective epitaxy process enables growth parallel to the substrate, and hence in-plane integration with Si, and in-situ in-plane homo- and heterojunctions. The fabricated hybrid III-V/Si PhCs show emission over the entire telecommunication band from 1.2 to 1.6 µm at room temperature validating the device concept and its potential towards fully integrated light sources on silicon.

6.
Nanotechnology ; 30(8): 084004, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30524107

RESUMEN

InGaAs is a potential candidate for Si replacement in upcoming advanced technological nodes because of its excellent electron transport properties and relatively low interface defect density in dielectric gate stacks. Therefore, integrating InGaAs devices with the established Si platforms is highly important. Using template-assisted selective epitaxy (TASE), InGaAs nanowires can be monolithically integrated with high crystal quality, although the mechanisms of group III incorporation in this ternary material have not been thoroughly investigated. Here we present a detailed study of the compositional variations of InGaAs nanostructures epitaxially grown on Si(111) and Silicon-on-insulator substrates by TASE. We present a combination of XRD data and detailed EELS maps and find that the final Ga/In chemical composition depends strongly on both growth parameters and the growth facet type, leading to complex compositional sub-structures throughout the crystals. We can further conclude that the composition is governed by the facet-dependent chemical reaction rates at low temperature and low V/III ratio, while at higher temperature and V/III ratio, the incorporation is transport limited. In this case we see indications that the transport is a competition between Knudsen flow and surface diffusion.

7.
Nano Lett ; 18(12): 7856-7862, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30427685

RESUMEN

Recent research on nanowires (NWs) demonstrated the ability of III-V semiconductors to adopt a different crystallographic phase when they are grown as nanostructures, giving rise to a novel class of materials with unique properties. Controlling the crystal structure however remains difficult and the geometrical constraints of NWs cause integration challenges for advanced devices. Here, we report for the first time on the phase-controlled growth of micron-sized planar InP films by selecting confined growth planes during template-assisted selective epitaxy. We demonstrate this by varying the orientation of predefined templates, which results in concurrent formation of zinc-blende (ZB) and wurtzite (WZ) material exhibiting phase purities of 100% and 97%, respectively. Optical characterization revealed a 70 meV higher band gap and a 2.5× lower lifetime for WZ InP in comparison to its natural ZB phase. Further, a model for the transition of the crystal structure is presented based on the observed growth facets and the bonding configuration of InP surfaces.

8.
Nano Lett ; 17(4): 2596-2602, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28334529

RESUMEN

Coherent interconnection of quantum bits remains an ongoing challenge in quantum information technology. Envisioned hardware to achieve this goal is based on semiconductor nanowire (NW) circuits, comprising individual NW devices that are linked through ballistic interconnects. However, maintaining the sensitive ballistic conduction and confinement conditions across NW intersections is a nontrivial problem. Here, we go beyond the characterization of a single NW device and demonstrate ballistic one-dimensional (1D) quantum transport in InAs NW cross-junctions, monolithically integrated on Si. Characteristic 1D conductance plateaus are resolved in field-effect measurements across up to four NW-junctions in series. The 1D ballistic transport and sub-band splitting is preserved for both crossing-directions. We show that the 1D modes of a single injection terminal can be distributed into multiple NW branches. We believe that NW cross-junctions are well-suited as cross-directional communication links for the reliable transfer of quantum information as required for quantum computational systems.

9.
Nano Lett ; 14(4): 1914-20, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24628529

RESUMEN

We report complementary metal-oxide-semiconductor (CMOS)-compatible integration of compound semiconductors on Si substrates. InAs and GaAs nanowires are selectively grown in vertical SiO2 nanotube templates fabricated on Si substrates of varying crystallographic orientations, including nanocrystalline Si. The nanowires investigated are epitaxially grown, single-crystalline, free from threading dislocations, and with an orientation and dimension directly given by the shape of the template. GaAs nanowires exhibit stable photoluminescence at room temperature, with a higher measured intensity when still surrounded by the template. Si-InAs heterojunction nanowire tunnel diodes were fabricated on Si(100) and are electrically characterized. The results indicate a high uniformity and scalability in the fabrication process.

10.
ACS Photonics ; 11(3): 1006-1011, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38523747

RESUMEN

Photonic integrated circuits are paving the way for novel on-chip functionalities with diverse applications in communication, computing, and beyond. The integration of on-chip light sources, especially single-mode lasers, is crucial for advancing those photonic chips to their full potential. Recently, novel concepts involving topological designs introduced a variety of options for tuning device properties, such as the desired single-mode emission. Here, we introduce a novel cavity design that allows amplification of the topological interface mode by deterministic placement of gain material within a topological lattice. The proposed design is experimentally implemented by a selective epitaxy process to achieve closely spaced Si and InGaAs nanorods embedded within the same layer. This results in the first demonstration of a single-mode laser in the telecom band using the concept of amplified topological modes without introducing artificial losses.

11.
Nat Commun ; 15(1): 710, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267457

RESUMEN

Semiconductor transistors operate by modulating the charge carrier concentration of a channel material through an electric field coupled by a capacitor. This mechanism is constrained by the fundamental transport physics and material properties of such devices-attenuation of the electric field, and limited mobility and charge carrier density in semiconductor channels. In this work, we demonstrate a new type of transistor that operates through a different mechanism. The channel material is a Weyl semimetal, NbP, whose resistivity is modulated via a magnetic field generated by an integrated superconductor. Due to the exceptionally large electron mobility of this material, which reaches over 1,000,000 cm2/Vs, and the strong magnetoresistive coupling, the transistor can generate significant transconductance amplification at nanowatt levels of power. This type of device can enable new low-power amplifiers, suitable for qubit readout operation in quantum computers.

12.
Langmuir ; 29(5): 1340-5, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23339343

RESUMEN

The control and repair of defects at metal/molecule interfaces is central to the realization of molecular electronic circuits with reproducible performance. The fundamental mechanism governing defect (pore) evolution on mica-supported metal surfaces, its propagation in self-assembled molecular layers, and its implications for molecular junction devices are discussed. Pore eradication by replacing mica with halide platforms coupled with elevated substrate temperature during metal deposition yields exceptionally ultraflat metal landscapes. In situ scanning tunneling microscopy further substantiates molecular locking at defect sites and upon defect healing; the emergence of a closely packed 2-D molecular architecture is demonstrated with nanometer-scale spatial resolution in liquids.

13.
Nanotechnology ; 24(22): 225304, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23637047

RESUMEN

We demonstrate a catalyst-free growth technique to directly integrate III-V semiconducting nanowires on silicon using selective area epitaxy within a nanotube template. The nanotube template is selectively filled by homo- as well as heteroepitaxial growth of nanowires with the morphology entirely defined by the template geometry. To demonstrate the method single-crystalline InAs wires on Si as well as InAs-InSb axial heterostructure nanowires are grown within the template. The achieved heterointerface is very sharp and confined within 5-6 atomic planes which constitutes a primary advantage of this technique. Compared to metal-catalyzed or self-catalyzed nanowire growth processes, the nanotube template approach does not suffer from the often observed intermixing of (hetero-) interfaces and non-intentional core-shell formation. The sequential deposition of different material layers within a nanotube template can therefore serve as a general monolithic integration path for III-V based electronic and optoelectronic devices on silicon.

14.
Nano Lett ; 12(2): 699-703, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22214422

RESUMEN

We report on the fabrication and characterization of silicon nanowire tunnel diodes. The silicon nanowires were grown on p-type Si substrates using Au-catalyzed vapor-liquid-solid growth and in situ n-type doping. Electrical measurements reveal Esaki diode characteristics with peak current densities of 3.6 kA/cm(2), peak-to-valley current ratios of up to 4.3, and reverse current densities of up to 300 kA/cm(2) at 0.5 V reverse bias. Strain-dependent current-voltage (I-V) measurements exhibit a decrease of the peak tunnel current with uniaxial tensile stress and an increase of 48% for 1.3 GPa compressive stress along the <111> growth direction, revealing the strain dependence of the Si band structure and thus the tunnel barrier. The contributions of phonons to the indirect tunneling process were probed by conductance measurements at 4.2 K. These measurements show phonon peaks at energies corresponding to the transverse acoustical and transverse optical phonons. In addition, the low-temperature conductance measurements were extended to higher biases to identify potential impurity states in the band gap. The results demonstrate that the most likely impurity, namely, Au from the catalyst particle, is not detectable, a finding that is also supported by the excellent device properties of the Esaki diodes reported here.


Asunto(s)
Nanocables/química , Silicio/química , Catálisis , Oro/química , Tamaño de la Partícula
15.
Discov Nano ; 18(1): 4, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36746886

RESUMEN

The idea of benefitting from the properties of III-V semiconductors and silicon on the same substrate has been occupying the minds of scientists for several years. Although the principle of III-V integration on a silicon-based platform is simple, it is often challenging to perform due to demanding requirements for sample preparation rising from a mismatch in physical properties between those semiconductor groups (e.g. different lattice constants and thermal expansion coefficients), high cost of device-grade materials formation and their post-processing. In this paper, we demonstrate the deposition of group-III metal and III-V semiconductors in microfabricated template structures on silicon as a strategy for heterogeneous device integration on Si. The metal (indium) is selectively electrodeposited in a 2-electrode galvanostatic configuration with the working electrode (WE) located in each template, resulting in well-defined In structures of high purity. The semiconductors InAs and InSb are obtained by vapour phase diffusion of the corresponding group-V element (As, Sb) into the liquified In confined in the template. We discuss in detail the morphological and structural characterization of the synthesized In, InAs and InSb crystals as well as chemical analysis through scanning electron microscopy (SEM), scanning transmission electron microscopy (TEM/STEM), and energy-dispersive X-ray spectroscopy (EDX). The proposed integration path combines the advantage of the mature top-down lithography technology to define device geometries and employs economic electrodeposition (ED) and vapour phase processes to directly integrate difficult-to-process materials on a silicon platform.

16.
ACS Appl Electron Mater ; 5(5): 2624-2637, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37250468

RESUMEN

In recent times the chiral semimetal cobalt monosilicide (CoSi) has emerged as a prototypical, nearly ideal topological conductor hosting giant, topologically protected Fermi arcs. Exotic topological quantum properties have already been identified in CoSi bulk single crystals. However, CoSi is also known for being prone to intrinsic disorder and inhomogeneities, which, despite topological protection, risk jeopardizing its topological transport features. Alternatively, topology may be stabilized by disorder, suggesting the tantalizing possibility of an amorphous variant of a topological metal, yet to be discovered. In this respect, understanding how microstructure and stoichiometry affect magnetotransport properties is of pivotal importance, particularly in case of low-dimensional CoSi thin films and devices. Here we comprehensively investigate the magnetotransport and magnetic properties of ≈25 nm Co1-xSix thin films grown on a MgO substrate with controlled film microstructure (amorphous vs textured) and chemical composition (0.40 < x < 0.60). The resistivity of Co1-xSix thin films is nearly insensitive to the film microstructure and displays a progressive evolution from metallic-like (dρxx/dT > 0) to semiconducting-like (dρxx/dT < 0) regimes of conduction upon increasing the silicon content. A variety of anomalies in the magnetotransport properties, comprising for instance signatures consistent with quantum localization and electron-electron interactions, anomalous Hall and Kondo effects, and the occurrence of magnetic exchange interactions, are attributable to the prominent influence of intrinsic structural and chemical disorder. Our systematic survey brings to attention the complexity and the challenges involved in the prospective exploitation of the topological chiral semimetal CoSi in nanoscale thin films and devices.

17.
Nanotechnology ; 23(50): 505708, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23187068

RESUMEN

We report on in situ doping of InAs nanowires grown by metal-organic vapor-phase epitaxy without any catalyst particles. The effects of various dopant precursors (Si(2)H(6), H(2)S, DETe, CBr(4)) on the nanowire morphology and the axial and radial growth rates are investigated to select dopants that enable control of the conductivity in a broad range and that concomitantly lead to favorable nanowire growth. In addition, the resistivity of individual wires was measured for different gas-phase concentrations of the dopants selected, and the doping density and mobility were extracted. We find that by using Si(2)H(6) axially and radially uniform doping densities up to 7 × 10(19) cm(-3) can be obtained without affecting the morphology or growth rates. For sulfur-doped InAs nanowires, we find that the distribution coefficient depends on the growth conditions, making S doping more difficult to control than Si doping. Moreover, above a critical sulfur gas-phase concentration, compensation takes place, limiting the maximum doping level to 2 × 10(19) cm(-3). Finally, we extract the specific contact resistivity as a function of doping concentration for Ti and Ni contacts.

18.
Nano Lett ; 11(10): 4195-9, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21875101

RESUMEN

We report on the electrical characterization of one-sided p(+)-si/n-InAs nanowire heterojunction tunnel diodes to provide insight into the tunnel process occurring in this highly lattice mismatched material system. The lattice mismatch gives rise to dislocations at the interface as confirmed by electron microscopy. Despite this, a negative differential resistance with peak-to-valley current ratios of up to 2.4 at room temperature and with large current densities is observed, attesting to the very abrupt and high-quality interface. The presence of dislocations and other defects that increase the excess current is evident in the first and second derivative of the I-V characteristics as distinct peaks arising from trap-and phonon-assisted tunneling via the corresponding defect levels. We observe this assisted tunneling mainly in the forward direction and at low reverse bias but not at higher reverse biases because the band-to-band generation rates are peaked in the InAs, which is also confirmed by modeling. This indicates that most of the peaks are due to dislocations and defects in the immediate vicinity of the interface. Finally, we also demonstrate that these devices are very sensitive to electrical stress, in particular at room temperature, because of the extremely high electrical fields obtained at the abrupt junction even at low bias. The electrical stress induces additional defect levels in the band gap, which reduce the peak-to-valley current ratios.

19.
ACS Photonics ; 9(4): 1218-1225, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35480488

RESUMEN

An important building block for on-chip photonic applications is a scaled emitter. Whispering gallery mode cavities based on III-Vs on Si allow for small device footprints and lasing with low thresholds. However, multimodal emission and wavelength stability over a wider range of temperature can be challenging. Here, we explore the use of Au nanorod antennae on InP whispering gallery mode lasers on Si for single-mode emission. We show that by proper choice of the antenna size and positioning, we can suppress the side modes of a cavity and achieve single-mode emission over a wide excitation range. We establish emission trends by varying the size of the antenna and show that the far-field radiation pattern differs significantly for devices with and without antenna. Furthermore, the antenna-induced single-mode emission is dominant from room temperature (300 K) down to 200 K, whereas the cavity without an antenna is multimodal and its dominant emission wavelength is highly temperature-dependent.

20.
Nat Commun ; 13(1): 909, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177604

RESUMEN

The seamless integration of III-V nanostructures on silicon is a long-standing goal and an important step towards integrated optical links. In the present work, we demonstrate scaled and waveguide coupled III-V photodiodes monolithically integrated on Si, implemented as InP/In0.5Ga0.5As/InP p-i-n heterostructures. The waveguide coupled devices show a dark current down to 0.048 A/cm2 at -1 V and a responsivity up to 0.2 A/W at -2 V. Using grating couplers centered around 1320 nm, we demonstrate high-speed detection with a cutoff frequency f3dB exceeding 70 GHz and data reception at 50 GBd with OOK and 4PAM. When operated in forward bias as a light emitting diode, the devices emit light centered at 1550 nm. Furthermore, we also investigate the self-heating of the devices using scanning thermal microscopy and find a temperature increase of only ~15 K during the device operation as emitter, in accordance with thermal simulation results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA