Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Microbiol ; 122: 104544, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839230

RESUMEN

The objective of this study was to identify a suitable surrogate for E. coli O157:H7 strain 19685/91 and O113:H21 strain TS18/08, by assessing their thermal resistance at temperatures of 60 °C, 65 °C, and 72 °C in strawberry nectar. The influence of the matrix and the research methodology on the decimal reduction time (D-value) was investigated. Thermal kinetics and safety assessment demonstrated that E. coli ATCC 8739 is a suitable surrogate. The study demonstrated that the presence of fruit particles in the nectar increased thermal resistance of the tested strains. Variations in D-values were observed depending on the research method employed, with D-values in glass capillaries were up to 6.6 times lower compared to larger sample volumes. Encapsulation of E. coli ATCC 8739 exhibited high efficiency of 90.25 ± 0.26% and maintained stable viable counts after 26 days of storage in strawberry nectar at 4 °C. There were no significant differences in thermal resistance between surrogates directly inoculated into strawberry nectar and those encapsulated in alginate beads. Additionally, the encapsulated strains did not migrate outside the beads. Therefore, encapsulated E. coli ATCC 8739 in alginate beads can be effectively utilized in industrial settings to validate thermal treatments as a reliable and safe method.


Asunto(s)
Escherichia coli Enterohemorrágica , Fragaria , Frutas , Calor , Frutas/microbiología , Fragaria/microbiología , Escherichia coli Enterohemorrágica/crecimiento & desarrollo , Microbiología de Alimentos , Recuento de Colonia Microbiana , Viabilidad Microbiana , Néctar de las Plantas/química , Escherichia coli O157/crecimiento & desarrollo , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Cinética
2.
Foods ; 13(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38397565

RESUMEN

Pea protein is widely used as an alternative protein source in plant-based products. In the current study, we fermented pea protein to reduce off-flavor compounds, such as hexanal, and to produce a suitable fermentate for further processing. Laboratory fermentations using 5% (w/v) pea protein suspension were carried out using four selected lactic acid bacteria (LAB) strains, investigating their growth and acidification capabilities in pea protein. Rapid acidification of pea protein was achieved with Lactococcus lactis subsp. lactis strain LTH 7123. Next, this strain was co-inoculated together with either the yeasts Kluyveromyces lactis LTH 7165, Yarrowia lipolytica LTH 6056, or Kluyveromyces marxianus LTH 6039. Fermentation products of the mixed starter cultures and of the single strains were further analyzed by gas chromatography coupled with mass spectrometry to quantify selected volatile flavor compounds. Fermentation with L. lactis LTH 7123 led to an increase in compounds associated with the "beany" off-flavors of peas, including hexanal. However, significant reduction in those compounds was achieved after fermentation with Y. lipolytica LTH 6056 with or without L. lactis LTH 7123. Thus, fermentation using co-cultures of LAB and yeasts strains could prove to be a valuable method for enhancing quality attributes of pea protein-based products.

3.
Sci Rep ; 14(1): 6043, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472311

RESUMEN

Shiga toxins (Stx) produced by pathogenic bacteria can cause mild to severe diseases in humans. Thus, the analysis of such toxins is of utmost importance. As an AB5 toxin, Stx consist of a catalytic A-subunit acting as a ribosome-inactivating protein (RIP) and a B-pentamer binding domain. In this study we synthesized the subunits and holotoxins from Stx and Stx2a using different cell-free systems, namely an E. coli- and CHO-based cell-free protein synthesis (CFPS) system. The functional activity of the protein toxins was analyzed in two ways. First, activity of the A-subunits was assessed using an in vitro protein inhibition assay. StxA produced in an E. coli cell-free system showed significant RIP activity at concentrations of 0.02 nM, whereas toxins synthesized in a CHO cell-free system revealed significant activity at concentrations of 0.2 nM. Cell-free synthesized StxA2a was compared to StxA2a expressed in E. coli cells. Cell-based StxA2a had to be added at concentrations of 20 to 200 nM to yield a significant RIP activity. Furthermore, holotoxin analysis on cultured HeLa cells using an O-propargyl-puromycin assay showed significant protein translation reduction at concentrations of 10 nM and 5 nM for cell-free synthesized toxins derived from E. coli and CHO systems, respectively. Overall, these results show that Stx can be synthesized using different cell-free systems while remaining functionally active. In addition, we were able to use CFPS to assess the activity of different Stx variants which can further be used for RIPs in general.


Asunto(s)
Escherichia coli , Toxinas Shiga , Humanos , Toxinas Shiga/metabolismo , Escherichia coli/genética , Sistema Libre de Células/metabolismo , Células HeLa , Biosíntesis de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA