Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Microbiol Immunol ; 208(3-4): 439-446, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31004200

RESUMEN

Roizman's definition of herpesviral latency, which applies also to cytomegaloviruses (CMVs), demands maintenance of reactivation-competent viral genomes after clearance of productive infection. It is more recent understanding that failure to complete the productive viral cycle for virus assembly and release does not imply viral gene silencing at all genetic loci and all the time. It rather appears that CMV latency is transcriptionally "noisy" in that silenced viral genes get desilenced from time to time in a stochastic manner, leading to "transcripts expressed in latency" (TELs). If a TEL happens to code for a protein that contains a CD8 T cell epitope, protein processing can lead to the presentation of the antigenic peptide and restimulation of cognate CD8 T cells during latency. This mechanism is discussed as a potential driver of epitope-selective accumulation of CD8 T cells over time, a phenomenon linked to CMV latency and known as "memory inflation" (MI). So far, expression of an epitope-encoding TEL was shown only for the major immediate-early (MIE) gene m123/ie1 of murine cytomegalovirus (mCMV), which codes for the prototypic MI-driving antigenic peptide YPHFMPTNL that is presented by the MHC class-I molecule Ld. The only known second MI-driving antigenic peptide of mCMV in the murine MHC haplotype H-2d is AGPPRYSRI presented by the MHC-I molecule Dd. This peptide is very special in that it is encoded by the early (E) phase gene m164 and by an overlapping immediate-early (IE) transcript governed by a promoter upstream of m164. If MI is driven by presentation of TEL-derived antigenic peptides, as the hypothesis says, one should find corresponding TELs. We show here that E-phase and IE-phase transcripts that code for the MI-driving antigenic peptide AGPPRYSRI are independently and stochastically expressed in latently infected lungs.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Perfilación de la Expresión Génica , Muromegalovirus/inmunología , Latencia del Virus , Animales , Antígenos Virales/biosíntesis , Modelos Animales de Enfermedad , Epítopos/biosíntesis , Epítopos/inmunología , Memoria Inmunológica , Muromegalovirus/crecimiento & desarrollo
2.
Avian Dis ; 64(1): 69-79, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32267127

RESUMEN

The development of immunocompetence in chicks after hatching is not fully understood. However, detailed knowledge of immunocompetence and maturation processes in day-old chicks (DOCs) and juvenile chickens (Gallus gallus domesticus) is necessary to implement enhanced immunization strategies. For viral diseases, this especially includes the development of cellular immunity focusing on T-cell-dependent responses. In the current study, we investigated T-cell subsets in blood and lymphoid tissues of 1-to-21-day-old chickens concerning their cellular composition and localization. We detected an increase of T-cell frequencies in blood and spleen and a shift of the CD8α dimer expression toward a CD8αß expression on the surface of T cells with increasing age. A relocalization of lymphocytes into antigen presentation structures within the spleen was affirmed. In addition, changes in basal messenger RNA (mRNA) level, with increasing IL2 and IFNγ mRNA levels at different ages were measured. These detected changes suggest an improved T-cell-dependent antiviral response with increasing age in chickens. To confirm this finding on a functional level, we conducted a transfer experiment: adult and, as a negative control, neonatal naïve lymphocytes were transferred into DOCs. Afterward, the protection induced by these transferred cells was verified by a sublethal infection by using a highly pathogenic avian influenza virus with neuraminidase deletion, H5Ndel. Previous experiments have shown that adult animals survive infection with this virus strain, while naïve DOCs show severe symptoms or even die. As a result, the transfer of adult, but not neonatal lymphocytes, confers protection to DOCs against the infection, demonstrating functional differences in lymphocytes from chicks of different ages. Collectively, these data reveal the inability of chicks to mount an effective, cellular antiviral response in the first 3 wk of life. Therefore, we propose that the observed maturation of both the innate and the adaptive arms of the immune system early in development is mandatory for controlling influenza infection in chickens, as well as for an effective vaccination with replication-competent viral vaccine strains.


Asunto(s)
Sangre/inmunología , Pollos/inmunología , Inmunidad Celular , Inmunocompetencia , Subtipo H5N1 del Virus de la Influenza A/inmunología , Tejido Linfoide/inmunología , Linfocitos T/fisiología , Factores de Edad , Animales , Femenino , Masculino
3.
Artículo en Inglés | MEDLINE | ID: mdl-32984069

RESUMEN

Mast cells (MC) represent "inbetweeners" of the immune system in that they are part of innate immunity by acting as first-line sentinels for environmental antigens but also provide a link to adaptive immunity by secretion of chemokines that recruit CD8 T cells to organ sites of infection. An interrelationship between MC and cytomegalovirus (CMV) has been a blank area in science until recently when the murine model revealed a role for MC in the resolution of pulmonary infection by murine CMV (mCMV). As to the mechanism, MC were identified as a target cell type of mCMV. Infected MC degranulate and synthesize the CC-chemokine ligand-5 (CCL-5), which is released to attract protective virus-specific CD8 T cells to infected host tissue for confining and eventually resolving the productive, cytopathogenic infection. In a step forward in our understanding of how mCMV infection of MC triggers their degranulation, we document here a critical role for the mCMV m38.5 gene product, a mitochondria-localized inhibitor of apoptosis (vMIA). We show an involvement of mCMV vMIA-m38.5 in MC degranulation by two reciprocal approaches: first, by enhanced degranulation after m38.5 gene transfection of bone marrow-derived cell culture-grown MC (BMMC) and, second, by reduced degranulation of MC in peritoneal exudate cell populations infected ex corpore or in corpore with mutant virus mCMV-Δm38.5. These studies thus reveal a so far unknown function of mCMV vMIA-m38.5 and offer a previously unconsidered but biologically relevant cell system for further analyzing functional analogies between vMIAs of different CMV species.


Asunto(s)
Muromegalovirus , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis , Degranulación de la Célula , Citomegalovirus , Mastocitos , Ratones
4.
Artículo en Inglés | MEDLINE | ID: mdl-32984075

RESUMEN

Murine cytomegalovirus (mCMV) codes for MHC class-I trafficking modulators m04/gp34, m06/gp48, and m152/gp40. By interacting with the MHC class-Iα chain, these proteins disconnect peptide-loaded MHC class-I (pMHC-I) complexes from the constitutive vesicular flow to the cell surface. Based on the assumption that all three inhibit antigen presentation, and thus the recognition of infected cells by CD8 T cells, they were referred to as "immunoevasins." Improved antigen presentation mediated by m04 in the presence of m152 after infection with deletion mutant mCMV-Δm06W, compared to mCMV-Δm04m06 expressing only m152, led us to propose renaming these molecules "viral regulators of antigen presentation" (vRAP) to account for both negative and positive functions. In accordance with a positive function, m04-pMHC-I complexes were found to be displayed on the cell surface, where they are primarily known as ligands for Ly49 family natural killer (NK) cell receptors. Besides the established role of m04 in NK cell silencing or activation, an anti-immunoevasive function by activation of CD8 T cells is conceivable, because the binding site of m04 to MHC class-Iα appears not to mask the peptide binding site for T-cell receptor recognition. However, functional evidence was based on mCMV-Δm06W, a virus of recently doubted authenticity. Here we show that mCMV-Δm06W actually represents a mixture of an authentic m06 deletion mutant and a mutant with an accidental additional deletion of a genome region encompassing also gene m152. Reanalysis of previously published experiments for the authentic mutant in the mixture confirms the previously concluded positive vRAP function of m04.


Asunto(s)
Muromegalovirus , Animales , Presentación de Antígeno , Antivirales , Linfocitos T CD8-positivos , Antígenos de Histocompatibilidad Clase I , Glicoproteínas de Membrana , Ratones , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA