Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
NPJ Vaccines ; 9(1): 127, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003272

RESUMEN

Swine influenza A viruses (swIAV) cause an economically important respiratory disease in modern pig production. Continuous virus transmission and antigenic drift are difficult to control in enzootically infected pig herds. Here, antibody-positive piglets from a herd enzootically infected with swIAV H1N2 (clade 1 A.3.3.2) were immunized using a homologous prime-boost vaccination strategy with novel live attenuated influenza virus (LAIV) based on a reassortment-incompetent bat influenza-swIAV chimera or a vesicular stomatitis virus-based replicon vaccine. Challenge infection of vaccinated piglets by exposure to H1N2 swIAV-infected unvaccinated seeder pigs showed that both LAIV and replicon vaccine markedly reduced virus replication in the upper and lower respiratory tract, respectively, compared to piglets immunized with commercial heterologous or autologous adjuvanted whole-inactivated virus vaccines. Our novel vaccines may aid in interrupting continuous IAV transmission chains in large enzootically infected pig herds, improve the health status of the animals, and reduce the risk of zoonotic swIAV transmission.

2.
Front Immunol ; 8: 1665, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29250065

RESUMEN

Mast cells (MCs) are long-living multifunctional innate immune cells that originate from hematopoietic precursors and specifically differentiate in the destination tissue, e.g., skin, respiratory mucosa, intestine, where they mediate immune cell recruitment and antimicrobial defense. In vivo these tissues have characteristic physiological oxygen levels that are considerably lower than the atmospheric oxygen conditions (159 mmHg, 21% O2; 5% CO2) traditionally used to differentiate MCs and to study their functionality in vitro. Only little is known about the impact of physiological oxygen conditions on the differentiation process of MCs. This study aimed to characterize the differentiation of immature murine bone marrow-derived MCs under physioxia in vitro (7% O2; 53 mmHg; 5% CO2). Bone marrow-derived suspension cells were differentiated in the presence of interleukin-3 with continuous, non-invasive determination of the oxygen level using a Fibox4-PSt3 measurement system without technique-caused oxygen consumption. Trypan blue staining confirmed cellular viability during the specified period. Interestingly, MCs cultivated at 7% O2 showed a significantly delayed differentiation rate defined by CD117-positive cells, analyzed by flow cytometry, and reached >95% CD117 positive population at day 32 after isolation. Importantly, MCs differentiated under physioxia displayed a decreased transcript expression level of hif-1α and selected target genes vegf, il-6, and tnf-α, but an increase of foxo3 and vhl expression compared to MCs cultivated under normoxia. Moreover, the production of reactive oxygen species as well as the amount of intracellular stored histamine was significantly lower in MCs differentiated under low oxygen levels, which might have consequences for their function such as immunomodulation of other immune cells. These results show for the first time that physioxia substantially affect maturation and the properties of MCs and highlight the need to study their function under physiologically relevant oxygen conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA