RESUMEN
Respiratory syncytial virus (RSV) is the primary cause for acute lower respiratory syndrome in children younger than 5 years. Research on B cell repertoires and antibodies binding the RSV fusion protein (RSV F) is of major interest in the development of potential vaccine candidates and therapies. B cell receptors (BCRs) which have higher affinities for a specific antigen are preferentially selected for B cell clonal expansion in germinal center reactions. Consequently, antigen-specific BCR repertoires share common features, as for instance preferential variable gene usage, variable region mutation levels or lengths of the heavy chain complementarity-determining region 3. Since RSV repeatedly infects every person throughout life, memory B cells (MBC) expressing RSV F-binding BCRs circulate in the blood of healthy adults. This dataset of BCR variable region sequence features was derived from single cell-sorted RSV F-directed MBCs of a healthy adult blood donor [1]. The dataset was produced with publicly available data analysis software programs and scripts, which facilitates integration or comparison with antibody sequence repertoire data of different individuals derived with the same or comparable data analysis approaches and tools.
RESUMEN
Respiratory syncytial virus (RSV) is the major cause of acute lower respiratory illness in children of less than 5 years of age which usually results in hospitalization or even in death. Vaccine development is hampered in consequence of a failed vaccine trial with fatalities in the 1960s. Even though research has been more focused on the RSV fusion protein in its pre-fusion conformation, maternal vaccination with post-fusion protein (post F) was considered as a promising vaccine strategy for passive immunization of babies, because post F preserves very potent neutralizing epitopes. We extensively analyzed post F-binding B cell receptor (BCR) repertoires of three vaccinees who received a post F-subunit vaccine in the context of a first-in-human, Phase 1, randomized, observer-blind, placebo-controlled clinical trial (ClinicalTrials.gov Identifier: NCT02298179). In order to compare the vaccine-induced BCR repertoires with BCR repertoires induced by natural infection, we also analyzed pre F- and post F-binding BCRs isolated from a healthy blood donor with relatively high F-binding memory B cell (MBC) frequencies. Analysis of the vaccine-induced repertoires revealed that preferentially VH4-encoded BCRs were expanded in response to vaccination. Estimation of antigen-driven selection further demonstrated that expanded BCRs accumulated positively selected replacement mutations which substantiated the hypothesis that post F-vaccination induces diversification of VH4-encoded BCRs in germinal centers. Comparison of the vaccine-induced BCR repertoires with clonally related pre and post F-binding BCRs of the healthy blood donor suggested that the vaccine expanded pre/post F cross-reactive MBCs. Interestingly, several vaccine-induced BCRs shared stereotypic VDJ gene junctions with known neutralizing Abs. Once expressed for functional characterization, the selected monoclonal Abs demonstrated the predicted neutralization activities in plaque reduction neutralization assays indicating that the post F-vaccine induced expansion of neutralizing BCRs.