Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell Proteomics ; 14(5): 1254-64, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25713121

RESUMEN

Lyme disease is the most important vector-borne disease in the Northern hemisphere and represents a major public health challenge with insufficient means of reliable diagnosis. Skin is rarely investigated in proteomics but constitutes in the case of Lyme disease the key interface where the pathogens can enter, persist, and multiply. Therefore, we investigated proteomics on skin samples to detect Borrelia proteins directly in cutaneous biopsies in a robust and specific way. We first set up a discovery gel prefractionation-LC-MS/MS approach on a murine model infected by Borrelia burgdorferi sensu stricto that allowed the identification of 25 Borrelia proteins among more than 1300 mouse proteins. Then we developed a targeted gel prefractionation-LC-selected reaction monitoring (SRM) assay to detect 9/33 Borrelia proteins/peptides in mouse skin tissue samples using heavy labeled synthetic peptides. We successfully transferred this assay from the mouse model to human skin biopsies (naturally infected by Borrelia), and we were able to detect two Borrelia proteins: OspC and flagellin. Considering the extreme variability of OspC, we developed an extended SRM assay to target a large set of variants. This assay afforded the detection of nine peptides belonging to either OspC or flagellin in human skin biopsies. We further shortened the sample preparation and showed that Borrelia is detectable in mouse and human skin biopsies by directly using a liquid digestion followed by LC-SRM analysis without any prefractionation. This study thus shows that a targeted SRM approach is a promising tool for the early direct diagnosis of Lyme disease with high sensitivity (<10 fmol of OspC/mg of human skin biopsy).


Asunto(s)
Antígenos Bacterianos/análisis , Proteínas de la Membrana Bacteriana Externa/análisis , Borrelia burgdorferi/química , Flagelina/análisis , Enfermedad de Lyme/diagnóstico , Péptidos/análisis , Proteómica/métodos , Animales , Biopsia , Borrelia burgdorferi/metabolismo , Cromatografía Liquida , Electroforesis , Geles , Humanos , Marcaje Isotópico , Enfermedad de Lyme/microbiología , Ratones , Péptidos/síntesis química , Proteómica/instrumentación , Piel/microbiología , Piel/patología
2.
Proteomics ; 15(7): 1280-90, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25475896

RESUMEN

Lyme borreliosis is the most important vector-borne disease in the Northern hemisphere. It is caused by Borrelia burgdorferi sensu lato bacteria transmitted to humans by the bite of hard ticks, Ixodes spp. Although antibiotic treatments are efficient in the early stage of the infection, a significant number of patients develop disseminated manifestations (articular, neurological, and cutaneous) due to unnoticed or absence of erythema migrans, or to inappropriate treatment. Vaccine could be an efficient approach to decrease Lyme disease incidence. We have developed a proteomic approach based on a one dimensional gel electrophoresis followed by LC-MS/MS strategy to identify new vaccine candidates. We analyzed a disseminating clone and the associated wild-type strain for each major pathogenic Borrelia species: B. burgdorferi sensu stricto, B. garinii, and B. afzelii. We identified specific proteins and common proteins to the disseminating clones of the three main species. In parallel, we used a spectral counting strategy to identify upregulated proteins common to the clones. Finally, 40 proteins were found that could potentially be involved in bacterial virulence and of interest in the development of a new vaccine. We selected the three proteins specifically detected in the disseminating clones of the three Borrelia species and checked by RT-PCR whether they are expressed in mouse skin upon B. burgdorferi ss inoculation. Interestingly, BB0566 appears as a potential vaccine candidate. All MS data have been deposited in the ProteomeXchange with identifier PXD000876 (http://proteomecentral.proteomexchange.org/dataset/PXD000876).


Asunto(s)
Borrelia burgdorferi/metabolismo , Enfermedad de Lyme/prevención & control , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vacunas Bacterianas , Expresión Génica , Humanos , Enfermedad de Lyme/microbiología , Ratones Endogámicos C3H , Proteómica , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
3.
Org Biomol Chem ; 10(41): 8276-82, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-22986901

RESUMEN

Several oleanane-related triterpenoids bearing a unique C-2 oxygenated functionality have been identified as the predominant triterpenoids from a 4900 year old oak wood sample buried in a freshwater sediment. They likely represent specific molecular tools that can be used as markers to reconstruct past vegetation assemblages, or to recognise severely altered oak wood at archaeological sites.

4.
Vaccines (Basel) ; 8(3)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825641

RESUMEN

Tick-borne diseases affecting humans and animals are on the rise worldwide. Vaccines constitute an effective control measure, but very few are available. We selected Lyme borreliosis, a bacterial infection transmitted by the hard tick Ixodes, to validate a new concept to identify vaccine candidates. This disease is the most common tick-borne disease in the Northern Hemisphere. Although attempts to develop a vaccine exist, none have been successfully marketed. In tick-borne diseases, the skin constitutes a very specific environment encountered by the pathogen during its co-inoculation with tick saliva. In a mouse model, we developed a proteomic approach to identify vaccine candidates in skin biopsies. We identified 30 bacterial proteins after syringe inoculation or tick inoculation of bacteria. Discovery proteomics using mass spectrometry might be used in various tick-borne diseases to identify pathogen proteins with early skin expression. It should help to better develop sub-unit vaccines based on a cocktail of several antigens, associated with effective adjuvant and delivery systems of antigens. In all vector-borne diseases, the skin deserves further investigation to better define its role in the elaboration of protective immunity against pathogens.

5.
Ticks Tick Borne Dis ; 10(2): 433-441, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30595500

RESUMEN

Understanding the mechanism of pathogen transmission is essential for the development of strategies to reduce arthropod-borne diseases. The pharmaco- and immunomodulatory properties of insect and acarine saliva play an essential role in the efficiency of pathogen transmission. The skin as the site where arthropod saliva and pathogens are inoculated - represents the key interface in vector-borne diseases. We identified tick molecules potentially involved in pathogen transmission, using micro-HPLC and mass spectrometry, followed by in vitro assays on human skin cells. Histone H4 isolated from Ixodes ricinus salivary gland extract was identified as a molecule with a dissociating effect on human primary fibroblasts. This histone might be involved in the formation of the feeding pool formed around the tick mouthparts and responsible of tissue necrosis in the vertebrate host. Thanks to its selective antimicrobial activity, it may also sterilize the feeding pool and facilitate transmission of pathogens such as Borrelia burgdorferi sensu lato.


Asunto(s)
Fibroblastos/efectos de los fármacos , Ixodes/química , Enfermedad de Lyme/transmisión , Glándulas Salivales/química , Extractos de Tejidos/farmacología , Animales , Borrelia burgdorferi , Células Cultivadas , Cromatografía Líquida de Alta Presión , Femenino , Histonas/farmacología , Humanos , Enfermedad de Lyme/microbiología , Espectrometría de Masas , Extractos de Tejidos/química
6.
PLoS One ; 10(7): e0133195, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26197047

RESUMEN

Lyme disease is a multisystemic disorder caused by B. burgdorferi sl. The molecular basis for specific organ involvement is poorly understood. The skin plays a central role in the development of Lyme disease as the entry site of B. burgdorferi in which specific clones are selected before dissemination. We compared the skin inflammatory response (antimicrobial peptides, cytokines and chemokines) elicited by spirochete populations recovered from patients presenting different clinical manifestations. Remarkably, these spirochete populations induced different inflammatory profiles in the skin of C3H/HeN mice. As spirochete population transmitted into the host skin is heterogeneous, we isolated one bacterial clone from a population recovered from a patient with neuroborreliosis and compared its virulence to the parental population. This clone elicited a strong cutaneous inflammatory response characterized by MCP-1, IL-6 and antimicrobial peptides induction. Mass spectrometry of this clone revealed 110 overexpressed proteins when compared with the parental population. We further focused on the expression of nine bacterial surface proteins. bb0347 coding for a protein that interacts with host fibronectin, allowing bacterial adhesion to vascular endothelium and extracellular matrix, was found to be induced in host skin with another gene bb0213 coding for a hypothetical protein. These findings demonstrate the heterogeneity of the B. burgdorferi ss population and the complexity of the interaction involved early in the skin.


Asunto(s)
Borrelia burgdorferi/genética , Heterogeneidad Genética , Piel/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/patogenicidad , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Fibronectinas/metabolismo , Flagelina/genética , Flagelina/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , Microbiota , Piel/metabolismo
7.
J Proteomics ; 96: 29-43, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24189444

RESUMEN

In Europe, Ixodes ricinus is the main vector of Lyme borreliosis. Their salivary glands play a critical role in the biological success of ticks. To better understand the cross-talk between Borrelia burgdorferi and tick salivary glands, we analyzed protein expression in the salivary glands of I. ricinus adult ticks that were infected by various strains of the B. burgdorferi sl complex. iTRAQ allowed the identification of more than 120 proteins, providing the first proteomic data pertaining to I. ricinus salivary glands. Among these proteins, only 12 were modulated in the presence of various Borrelia strains. Most of them are up-regulated and are involved in cell defense and protein synthesis and processing. Down-regulated proteins are mostly implicated in the cytoskeleton. The DIGE analysis allowed us to identify 35 proteins and showed the down-regulation of 4 proteins. All 15 proteins were not modulated by all strains. Overall, these observations showed that the presence of Borrelia in tick salivary glands is a factor of stress for the protein machinery, and also that some Borrelia strains produce a dysregulation of cytoskeletal proteins. Interestingly, a protein from Borrelia, OspA, was found in infected salivary glands. The consequence of its presence in salivary glands is discussed. BIOLOGICAL SIGNIFICANCE: Lyme borreliosis is still the most prevalent arthropod-borne disease in the temperate regions of the northern hemisphere. The geographical distribution of Lyme borreliosis is expanding, especially towards higher altitudes and latitudes. Human pathogenic spirochetes causing Lyme borreliosis belong to the B. burgdorferi sensu lato complex. They are extracellular pathogens transmitted to humans through the bite of Ixodes spp. ticks. The bioactive molecules present in tick saliva not only promote tick feeding, but also create an advantageous microenvironment at the tick bite site for survival and replication of Borrelia bacteria. Investigation of the tick-host-pathogen interface would provide new strategies to control tick-borne infections. We chose to analyze the interaction of several strains of the B. burgdorferi sensu lato complex with I. ricinus salivary glands. We also investigated the presence of bacterial proteins in salivary glands. For these purposes, we undertook a proteomic study implying the complementary approaches of iTRAQ and DIGE. Our study allowed identifying several salivary markers of infection that were shown to vary according to the strain. Moreover, OspA, a bacterial protein was shown to be expressed in salivary glands and may be implied in the pathogenicity of some Borrelia strains.


Asunto(s)
Vectores Arácnidos/metabolismo , Proteínas de Artrópodos/biosíntesis , Grupo Borrelia Burgdorferi , Regulación de la Expresión Génica , Ixodes/metabolismo , Glándulas Salivales/metabolismo , Proteínas y Péptidos Salivales/biosíntesis , Animales , Vectores Arácnidos/microbiología , Femenino , Humanos , Ixodes/microbiología , Enfermedad de Lyme/metabolismo , Enfermedad de Lyme/transmisión , Ratones , Glándulas Salivales/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA