Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 140(22): 224703, 2014 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-24929410

RESUMEN

We use first-principles density functional theory within the local density approximation to ascertain the ground state structure of real and theoretical compounds with the formula ABS3 (A = K, Rb, Cs, Ca, Sr, Ba, Tl, Sn, Pb, and Bi; and B = Sc, Y, Ti, Zr, V, and Nb) under the constraint that B must have a d(0) electronic configuration. Our findings indicate that none of these AB combinations prefer a perovskite ground state with corner-sharing BS6 octahedra, but that they prefer phases with either edge- or face-sharing motifs. Further, a simple two-dimensional structure field map created from A and B ionic radii provides a neat demarcation between combinations preferring face-sharing versus edge-sharing phases for most of these combinations. We then show that by modifying the common Goldschmidt tolerance factor with a multiplicative term based on the electronegativity difference between A and S, the demarcation between predicted edge-sharing and face-sharing ground state phases is enhanced. We also demonstrate that, by calculating the free energy contribution of phonons, some of these compounds may assume multiple phases as synthesis temperatures are altered, or as ambient temperatures rise or fall.

2.
Phys Rev Lett ; 107(7): 076102, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21902406

RESUMEN

We investigate the effect of ferroelectric polarization direction on the geometric properties of Pd deposited on the positive and negative surfaces of LiNbO(3) (0001). We predict preferred geometries and diffusion properties of small Pd clusters using density functional theory, and use these calculations as the basis for kinetic Monte Carlo simulations of Pd deposition on a larger scale. Our results show that on the positive surface, Pd atoms favor a clustered configuration, while on the negative surface, Pd atoms are adsorbed in a more dispersed pattern due to suppression of diffusion and agglomeration. This suggests that the effect of LiNbO(3) polarization direction on the catalytic activity of Pd [J. Phys. Chem. 88, 1148 (1984)] is due, at least in part, to differences in adsorption geometry. Further investigations using these methods can aid the search for catalysts whose activities switch reversibly with the polarization of their ferroelectric substrates.

3.
Nat Commun ; 11(1): 3696, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728046

RESUMEN

ENCODE comprises thousands of functional genomics datasets, and the encyclopedia covers hundreds of cell types, providing a universal annotation for genome interpretation. However, for particular applications, it may be advantageous to use a customized annotation. Here, we develop such a custom annotation by leveraging advanced assays, such as eCLIP, Hi-C, and whole-genome STARR-seq on a number of data-rich ENCODE cell types. A key aspect of this annotation is comprehensive and experimentally derived networks of both transcription factors and RNA-binding proteins (TFs and RBPs). Cancer, a disease of system-wide dysregulation, is an ideal application for such a network-based annotation. Specifically, for cancer-associated cell types, we put regulators into hierarchies and measure their network change (rewiring) during oncogenesis. We also extensively survey TF-RBP crosstalk, highlighting how SUB1, a previously uncharacterized RBP, drives aberrant tumor expression and amplifies the effect of MYC, a well-known oncogenic TF. Furthermore, we show how our annotation allows us to place oncogenic transformations in the context of a broad cell space; here, many normal-to-tumor transitions move towards a stem-like state, while oncogene knockdowns show an opposing trend. Finally, we organize the resource into a coherent workflow to prioritize key elements and variants, in addition to regulators. We showcase the application of this prioritization to somatic burdening, cancer differential expression and GWAS. Targeted validations of the prioritized regulators, elements and variants using siRNA knockdowns, CRISPR-based editing, and luciferase assays demonstrate the value of the ENCODE resource.


Asunto(s)
Bases de Datos Genéticas , Genómica , Neoplasias/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Redes Reguladoras de Genes , Humanos , Mutación/genética , Reproducibilidad de los Resultados , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA