Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
JOM (1989) ; 75(12): 5021-5024, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39301180

RESUMEN

This article is a summary of the authors' response to the 2023 Circular Economy Request for Information: Challenges and Opportunities of Increasing Materials Circularity, a call for information issued by the U.S. Department of Energy's Advanced Materials & Manufacturing Technologies Office (AMMTO) in March 2023. Information can be found at www.energy.gov/eere/ammto/2023-circular-economy-request-information-challenges-and-opportunities-increasing.

2.
Phys Rev Lett ; 125(20): 205503, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33258657

RESUMEN

High-throughput atomistic simulations reveal the unique effect of solute atoms on twin variant selection in Mg-Al alloys. Twin embryo growth first undergoes a stochastic incubation stage when embryos choose which twin variant to adopt, and then a deterministic growth stage when embryos expand without changing the selected twin variant. An increase in Al composition promotes the stochastic incubation behavior on the atomic level due to nucleation and pinning of interfacial disconnections. At compositions above a critical value, disconnection pinning results in multiple twin variant selection.


Asunto(s)
Aleaciones/química , Aluminio/química , Magnesio/química , Modelos Químicos , Simulación de Dinámica Molecular , Procesos Estocásticos
3.
Environ Sci Technol ; 49(2): 940-7, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25563893

RESUMEN

Due to economic and societal reasons, informal activities including open burning, backyard recycling, and landfill are still the prevailing methods used for electronic waste treatment in developing countries. Great efforts have been made, especially in China, to promote formal approaches for electronic waste management by enacting laws, developing green recycling technologies, initiating pilot programs, etc. The formal recycling process can, however, engender environmental impact and resource consumption, although information on the environmental loads and resource consumption is currently limited. To quantitatively assess the environmental impact of the processes in a formal printed wiring board (PWB) recycling chain, life cycle assessment (LCA) was applied to a formal recycling chain that includes the steps from waste liberation through materials refining. The metal leaching in the refining stage was identified as a critical process, posing most of the environmental impact in the recycling chain. Global warming potential was the most significant environmental impact category after normalization and weighting, followed by fossil abiotic depletion potential, and marine aquatic eco-toxicity potential. Scenario modeling results showed that variations in the power source and chemical reagents consumption had the greatest influence on the environmental performance. The environmental impact from transportation used for PWB collection was also evaluated. The results were further compared to conventional primary metals production processes, highlighting the environmental benefit of metal recycling from waste PWBs. Optimizing the collection mode, increasing the precious metals recovery efficiency in the beneficiation stage and decreasing the chemical reagents consumption in the refining stage by effective materials liberation and separation are proposed as potential improvement strategies to make the recycling chain more environmentally friendly. The LCA results provide environmental information for the improvement of future integrated technologies and electronic waste management.


Asunto(s)
Residuos Electrónicos/análisis , Metales/aislamiento & purificación , Reciclaje/métodos , Administración de Residuos/métodos , China , Electrónica , Modelos Teóricos , Instalaciones de Eliminación de Residuos
4.
Microsc Microanal ; 21(5): 1184-94, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26350148

RESUMEN

The preparation of transmission electron microcopy (TEM) samples from powders with particle sizes larger than ~100 nm poses a challenge. The existing methods are complicated and expensive, or have a low probability of success. Herein, we report a modified methodology for preparation of TEM samples from powders, which is efficient, cost-effective, and easy to perform. This method involves mixing powders with an epoxy on a piece of weighing paper, curing the powder-epoxy mixture to form a bulk material, grinding the bulk to obtain a thin foil, punching TEM discs from the foil, dimpling the discs, and ion milling the dimpled discs to electron transparency. Compared with the well established and robust grinding-dimpling-ion-milling method for TEM sample preparation for bulk materials, our modified approach for preparing TEM samples from powders only requires two additional simple steps. In this article, step-by-step procedures for our methodology are described in detail, and important strategies to ensure success are elucidated. Our methodology has been applied successfully for preparing TEM samples with large thin areas and high quality for many different mechanically milled metallic powders.

5.
Integr Environ Assess Manag ; 20(6): 2231-2244, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38837720

RESUMEN

Commercialization of rechargeable lithium-ion (Li-ion) batteries has revolutionized the design of portable electronic devices and is facilitating the current transition to electric vehicles. The technological specifications of Li-ion batteries continue to evolve through the introduction of various high-risk liquid electrolyte chemicals, yet critical evaluation of the physical, environmental, and human health hazards of these substances is lacking. Using the GreenScreen for Safer Chemicals approach, we conducted a chemical hazard assessment (CHA) of 103 electrolyte chemicals categorized into seven chemical groups: salts, carbonates, esters, ethers, sulfoxides-sulfites-sulfones, overcharge protection additives, and flame-retardant additives. To minimize data gaps, we focused on six toxicity and hazard data sources, including three empirical and three nonempirical predictive data sources. Furthermore, we investigated the structural similarities among selected electrolyte chemicals using the ChemMine tool and the simplified molecular input line entry system inputs from PubChem to evaluate whether chemicals with similar structures exhibit similar toxicity. The results demonstrate that salts, overcharge protection additives, and flame-retardant additives contain the most toxic components in the electrolyte solutions. Furthermore, carbonates, esters, and ethers account for most flammability hazards in Li-ion batteries. This study supports the complementary use of quantitative structure-activity relationship models to minimize data gaps and inconsistencies in CHA. Integr Environ Assess Manag 2024;20:2231-2244. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Suministros de Energía Eléctrica , Electrólitos , Litio , Medición de Riesgo , Sustancias Peligrosas/toxicidad
6.
J Hazard Mater ; 473: 134545, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761760

RESUMEN

Printed circuit boards (PCBs) make up a substantial amount of electronic waste (e-waste) generated annually. Waste PCBs contain high quantities of copper and gold in comparison to natural ores. As such, "urban mining" of waste PCBs to recover these metals is of commercial interest. In this work, we used life cycle assessment to compare the environmental impact of four copper and gold recovery processes. We evaluated pyrometallurgy, chemical leaching, and bioleaching, as well as a hybrid leaching process that uses bioleaching to recover copper and chemical leaching to recover gold. Furthermore, we considered differences in environmental impact based on differences in electricity sources. If electricity comes from fossil fuels, the pyrometallurgical process results in the lowest environmental impact in all impact categories studied. If electricity comes from carbon-free sources, the pyrometallurgical process results in the lowest environmental impact in all categories studied except global warming, where the hybrid leaching process results in the lowest impact. In all cases, metal recovery from waste PCBs leads to lower environmental impact than primary metal production. Our goal is to guide e-waste recyclers towards more environmentally sustainable metal recovery processes and to provide knowledge gaps in the field to guide future research.

7.
iScience ; 27(6): 109898, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38812545

RESUMEN

Decarbonization plans depend on the rapid, large-scale deployment of batteries to sufficiently decarbonize the electricity system and on-road transport. This can take many forms, shaped by technology, materials, and supply chain selection, which will have local and global environmental and social impacts. Current knowledge gaps limit the ability of decision-makers to make choices in facilitating battery deployment that minimizes or avoids unintended environmental and social consequences. These gaps include a lack of harmonized, accessible, and up-to-date data on manufacturing and supply chains and shortcomings within sustainability and social impact assessment methods, resulting in uncertainty that limits incorporation of research into policy making. These gaps can lead to unintended detrimental effects of large-scale battery deployment. To support decarbonization goals while minimizing negative environmental and social impacts, we elucidate current barriers to tracking how decision-making for large-scale battery deployment translates to environmental and social impacts and recommend steps to overcome them.

8.
Environ Sci Technol ; 47(2): 1040-7, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23237340

RESUMEN

Artificial lighting systems are transitioning from incandescent to compact fluorescent lamp (CFL) and light-emitting diode (LED) bulbs in response to the U.S. Energy Independence and Security Act and the EU Ecodesign Directive, which leads to energy savings and reduced greenhouse gas emissions. Although CFLs and LEDs are more energy-efficient than incandescent bulbs, they require more metal-containing components. There is uncertainty about the potential environmental impacts of these components and whether special provisions must be made for their disposal at the end of useful life. Therefore, the objective of this study is to analyze the resource depletion and toxicity potentials from the metals in incandescent, CFL, and LED bulbs to complement the development of sustainable energy policy. We assessed the potentials by examining whether the lighting products are to be categorized as hazardous waste under existing U.S. federal and California state regulations and by applying life cycle impact-based and hazard-based assessment methods (note that "life cycle impact-based method" does not mean a general life cycle assessment (LCA) but rather the elements in LCA used to quantify toxicity potentials). We discovered that both CFL and LED bulbs are categorized as hazardous, due to excessive levels of lead (Pb) leachability (132 and 44 mg/L, respectively; regulatory limit: 5) and the high contents of copper (111,000 and 31,600 mg/kg, respectively; limit: 2500), lead (3860 mg/kg for the CFL bulb; limit: 1000), and zinc (34,500 mg/kg for the CFL bulb; limit: 5000), while the incandescent bulb is not hazardous (note that the results for CFL bulbs excluded mercury vapor not captured during sample preparation). The CFLs and LEDs have higher resource depletion and toxicity potentials than the incandescent bulb due primarily to their high aluminum, copper, gold, lead, silver, and zinc. Comparing the bulbs on an equivalent quantity basis with respect to the expected lifetimes of the bulbs, the CFLs and LEDs have 3-26 and 2-3 times higher potential impacts than the incandescent bulb, respectively. We conclude that in addition to enhancing energy efficiency, conservation and sustainability policies should focus on the development of technologies that reduce the content of hazardous and rare metals in lighting products without compromising their performance and useful lifespan.


Asunto(s)
Sustancias Peligrosas/toxicidad , Iluminación/efectos adversos , Iluminación/instrumentación , Metales/toxicidad , Cobre/análisis , Cobre/toxicidad , Ambiente , Diseño de Equipo , Fluorescencia , Sustancias Peligrosas/análisis , Incandescencia , Plomo/análisis , Plomo/toxicidad , Iluminación/economía , Metales/análisis
9.
Sci Rep ; 13(1): 17705, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848463

RESUMEN

The presence of defects, such as pores, in materials processed using additive manufacturing represents a challenge during the manufacturing of many engineering components. Recently, ultrasonic vibration-assisted (UV-A) directed energy deposition (DED) has been shown to reduce porosity, promote grain refinement, and enhance mechanical performance in metal components. Whereas it is evident that the formation of such microstructural features is affected by the melt pool behavior, the specific mechanisms by which ultrasonic vibration (UV) influences the melt pool remain elusive. In the present investigation, UV was applied in situ to DED of 316L stainless steel single tracks and bulk parts. For the first time, high-speed video imaging and thermal imaging were implemented in situ to quantitatively correlate the application of UV to melt pool evolution in DED. Extensive imaging data were coupled with in-depth microstructural characterization to develop a statistically robust dataset describing the observed phenomena. Our findings show that UV increases the melt pool peak temperature and dimensions, while improving the wettability of injected particles with the melt pool surface and reducing particle residence time. Near the substrate, we observe that UV results in a 92% decrease in porosity, and a 54% decrease in dendritic arm spacing. The effect of UV on the melt pool is caused by the combined mechanisms of acoustic cavitation, ultrasound absorption, and acoustic streaming. Through in situ imaging we demonstrate quantitatively that these phenomena, acting simultaneously, effectively diminish with increasing build height and size due to acoustic attenuation, consequently decreasing the positive effect of implementing UV-A DED. Thus, this research provides valuable insight into the value of in situ imaging, as well as the effects of UV on DED melt pool dynamics, the stochastic interactions between the melt pool and incoming powder particles, and the limitations of build geometry on the UV-A DED technique.

10.
J Hazard Mater ; 437: 129301, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35716560

RESUMEN

Batteries are important for promoting renewable energy, but, like most engineered products, they contain multiple hazardous materials. The purpose of this study is to evaluate industrial-scale batteries using GreenScreen® for Safer Chemicals, an established chemical hazard assessment (CHA) framework, and to develop a systematic, transparent methodology to quantify the CHA results, harmonize them, and aggregate them into single-value hazard scores, which can facilitate quantitative comparison and a robust evaluation of data gaps, inconsistencies, and uncertainty through the implementation of carefully selected scenarios and stochastic multicriteria acceptability analysis (SMAA). Using multiple authoritative toxicity data sources, six battery products are evaluated: three lithium-ion batteries (lithium iron phosphate, lithium nickel cobalt manganese hydroxide, and lithium manganese oxide), and three redox flow batteries (vanadium redox, zinc-bromine, and all-iron). The CHA results indicate that many materials in these batteries, including reagents and intermediates, inherently exhibit high hazard; therefore, safer materials should be identified and considered in future designs. The scenario analysis and SMAA, combined, provide a quantitative evaluation framework to support the decision-making needed to compare alternative technologies. Thus, this study highlights specific strategies to reduce the use of hazardous materials in complex engineered products before they are widely used in this rapidly-expanding industry sector.

11.
Nat Commun ; 13(1): 20, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013175

RESUMEN

The abrupt occurrence of twinning when Mg is deformed leads to a highly anisotropic response, making it too unreliable for structural use and too unpredictable for observation. Here, we describe an in-situ transmission electron microscopy experiment on Mg crystals with strategically designed geometries for visualization of a long-proposed but unverified twinning mechanism. Combining with atomistic simulations and topological analysis, we conclude that twin nucleation occurs through a pure-shuffle mechanism that requires prismatic-basal transformations. Also, we verified a crystal geometry dependent twin growth mechanism, that is the early-stage growth associated with instability of plasticity flow, which can be dominated either by slower movement of prismatic-basal boundary steps, or by faster glide-shuffle along the twinning plane. The fundamental understanding of twinning provides a pathway to understand deformation from a scientific standpoint and the microstructure design principles to engineer metals with enhanced behavior from a technological standpoint.

12.
Environ Sci Technol ; 45(1): 320-7, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21138290

RESUMEN

Light-emitting diodes (LEDs) are advertised as environmentally friendly because they are energy efficient and mercury-free. This study aimed to determine if LEDs engender other forms of environmental and human health impacts, and to characterize variation across different LEDs based on color and intensity. The objectives are as follows: (i) to use standardized leachability tests to examine whether LEDs are to be categorized as hazardous waste under existing United States federal and California state regulations; and (ii) to use material life cycle impact and hazard assessment methods to evaluate resource depletion and toxicity potentials of LEDs based on their metallic constituents. According to federal standards, LEDs are not hazardous except for low-intensity red LEDs, which leached Pb at levels exceeding regulatory limits (186 mg/L; regulatory limit: 5). However, according to California regulations, excessive levels of copper (up to 3892 mg/kg; limit: 2500), Pb (up to 8103 mg/kg; limit: 1000), nickel (up to 4797 mg/kg; limit: 2000), or silver (up to 721 mg/kg; limit: 500) render all except low-intensity yellow LEDs hazardous. The environmental burden associated with resource depletion potentials derives primarily from gold and silver, whereas the burden from toxicity potentials is associated primarily with arsenic, copper, nickel, lead, iron, and silver. Establishing benchmark levels of these substances can help manufacturers implement design for environment through informed materials substitution, can motivate recyclers and waste management teams to recognize resource value and occupational hazards, and can inform policymakers who establish waste management policies for LEDs.


Asunto(s)
Residuos Electrónicos/análisis , Sustancias Peligrosas/análisis , Residuos Peligrosos/análisis , Iluminación , Metales/análisis , Conservación de los Recursos Naturales , Residuos Electrónicos/clasificación , Residuos Electrónicos/estadística & datos numéricos , Ambiente , Monitoreo del Ambiente , Sustancias Peligrosas/toxicidad , Residuos Peligrosos/clasificación , Residuos Peligrosos/estadística & datos numéricos , Plomo/análisis , Plomo/toxicidad , Metales/toxicidad , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
13.
J Environ Manage ; 92(9): 2235-40, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21561706

RESUMEN

Life Cycle Impact Assessment (LCIA) and Risk Assessment (RA) employ different approaches to evaluate toxic impact potential for their own general applications. LCIA is often used to evaluate toxicity potentials for corporate environmental management and RA is often used to evaluate a risk score for environmental policy in government. This study evaluates the cancer, non-cancer, and ecotoxicity potentials and risk scores of chemicals and industry sectors in the United States on the basis of the LCIA- and RA-based tools developed by U.S. EPA, and compares the priority screening of toxic chemicals and industry sectors identified with each method to examine whether the LCIA- and RA-based results lead to the same prioritization schemes. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) is applied as an LCIA-based screening approach with a focus on air and water emissions, and the Risk-Screening Environmental Indicator (RSEI) is applied in equivalent fashion as an RA-based screening approach. The U.S. Toxic Release Inventory is used as the dataset for this analysis, because of its general applicability to a comprehensive list of chemical substances and industry sectors. Overall, the TRACI and RSEI results do not agree with each other in part due to the unavailability of characterization factors and toxic scores for select substances, but primarily because of their different evaluation approaches. Therefore, TRACI and RSEI should be used together both to support a more comprehensive and robust approach to screening of chemicals for environmental management and policy and to highlight substances that are found to be of concern from both perspectives.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Industrias , Neoplasias/prevención & control , Pruebas de Toxicidad/métodos , Contaminantes Químicos del Agua/toxicidad , Bases de Datos Factuales , Ambiente , Estados Unidos , United States Environmental Protection Agency
14.
Integr Environ Assess Manag ; 15(6): 895-908, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31283083

RESUMEN

Chemical hazard assessment (CHA), which aims to investigate the inherent hazard potential of chemicals, has been developed with the purpose of promoting safer consumer products. Despite the increasing use of CHA in recent years, finding adequate and reliable toxicity data required for CHA is still challenging due to issues regarding data completeness and data quality. Also, collecting data from primary toxicity reports or literature can be time consuming, which promotes the use of secondary data sources instead. In this study, we evaluate and characterize numerous secondary data sources on the basis of 5 performance attributes: reliability, adequacy, transparency, volume, and ease of use. We use GreenScreen for Safer Chemicals v1.4 as the CHA framework, which defines the endpoints of interest used in this analysis. We focused upon 34 data sources that reflect 3 types of secondary data: chemical-oriented data sources, hazard-trait-oriented data sources, and predictive data sources. To integrate and analyze the evaluation results, we applied 2 multicriteria decision analysis (MCDA) methodologies: multiattribute utility theory (MAUT) and stochastic multiobjective acceptability analysis (SMAA). Overall, the findings in this research program allow us to explore the relative importance of performance criteria and the data source quality for effectively conducting CHA. Integr Environ Assess Manag 2019;00:1-14. © 2019 SETAC.


Asunto(s)
Técnicas de Apoyo para la Decisión , Contaminantes Ambientales/efectos adversos , Sustancias Peligrosas/efectos adversos , Medición de Riesgo/métodos , Seguridad de Productos para el Consumidor , Humanos , Reproducibilidad de los Resultados
15.
J Hazard Mater ; 365: 227-236, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30445353

RESUMEN

Chemical hazard assessment (CHA), designed to evaluate the inherent hazard of chemicals used in everyday consumer products, is gaining in popularity and rigor. Although CHA is being more commonly used by industry and government organizations, there is limited information in the academic literature on the merits and limitations of CHA methods. In the current study, the significance of the need to use multiple data sources to successfully complete a CHA is explored. Specifically, a case study approach is used in which more than one hundred organic substances used in the synthesis of organic solar cells are evaluated using the GreenScreen® for Safer Chemicals framework as the basis for the CHA. Seven data sources, including three chemical-oriented, two hazard-trait-oriented, and two predictive data sources, are utilized to minimize data gaps and allow for complete assessments for most of the chemicals of interest. Findings from sensitivity analysis using single data sources and combinations of data sources highlight that the CHA outcomes can vary considerably as a function of data sources used, which highlights the importance of identifying and/or creating more comprehensive and standardized data sources.

16.
Nat Commun ; 10(1): 4124, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511518

RESUMEN

While laser-printed metals do not tend to match the mechanical properties and thermal stability of conventionally-processed metals, incorporating and dispersing nanoparticles in them should enhance their performance. However, this remains difficult to do during laser additive manufacturing. Here, we show that aluminum reinforced by nanoparticles can be deposited layer-by-layer via laser melting of nanocomposite powders, which enhance the laser absorption by almost one order of magnitude compared to pure aluminum powders. The laser printed nanocomposite delivers a yield strength of up to 1000 MPa, plasticity over 10%, and Young's modulus of approximately 200 GPa, offering one of the highest specific Young's modulus and specific yield strengths among structural metals, as well as an improved specific strength and thermal stability up to 400 °C compared to other aluminum-based materials. The improved performance is attributed to a high density of well-dispersed nanoparticles, strong interfacial bonding between nanoparticles and Al matrix, and ultrafine grain sizes.

17.
Sci Adv ; 5(8): eaaw2398, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31467973

RESUMEN

Cooling, nucleation, and phase growth are ubiquitous processes in nature. Effective control of nucleation and phase growth is of significance to yield refined microstructures with enhanced performance for materials. Recent studies reveal that ultrafine grained (UFG)/nanocrystalline metals exhibit extraordinary properties. However, conventional microstructure refinement methods, such as fast cooling and inoculation, have reached certain fundamental limits. It has been considered impossible to fabricate bulk UFG/nanocrystalline metals via slow cooling. Here, we report a new discovery that nanoparticles can refine metal grains to ultrafine/nanoscale by instilling a continuous nucleation and growth control mechanism during slow cooling. The bulk UFG/nanocrystalline metal with nanoparticles also reveals an unprecedented thermal stability. This method overcomes the grain refinement limits and may be extended to any other processes that involve cooling, nucleation, and phase growth for widespread applications.

19.
Integr Environ Assess Manag ; 13(1): 167-176, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26887838

RESUMEN

GreenScreen® for Safer Chemicals is a framework for comparative chemical hazard assessment. It is the first transparent, open and publicly accessible framework of its kind, allowing manufacturers and governmental agencies to make informed decisions about the chemicals and substances used in consumer products and buildings. In the GreenScreen® benchmarking process, chemical hazards are assessed and classified based on 18 hazard endpoints from up to 30 different sources. The result is a simple numerical benchmark score and accompanying assessment report that allows users to flag chemicals of concern and identify safer alternatives. Although the screening process is straightforward, aggregating and sorting hazard data is tedious, time-consuming, and prone to human error. In light of these challenges, the present work demonstrates the usage of automation to cull chemical hazard data from publicly available internet resources, assign metadata, and perform a GreenScreen® hazard assessment using the GreenScreen® "List Translator." The automated technique, written as a module in the Python programming language, generates GreenScreen® List Translation data for over 3000 chemicals in approximately 30 s. Discussion of the potential benefits and limitations of automated techniques is provided. By embedding the library into a web-based graphical user interface, the extensibility of the library is demonstrated. The accompanying source code is made available to the hazard assessment community. Integr Environ Assess Manag 2017;13:167-176. © 2016 SETAC.


Asunto(s)
Automatización , Sustancias Peligrosas/toxicidad , Pruebas de Toxicidad/métodos , Seguridad Química , Medición de Riesgo/métodos
20.
Sci Rep ; 7(1): 7060, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765598

RESUMEN

Nanodiamonds (ND) present a unique combination of desirable mechanical, functional, and chemical characteristics that are ideally suited for reinforcing and enhancing the wear resistance of carbide based materials. Tungsten carbide cobalt (WC-Co) matrix nanocomposites reinforced with varying amounts of ND (2 - 10 vol.%) were synthesized here by spark plasma sintering. The rapid thermal consolidation route enabled attainment of dense samples with a significant retention of the metastable diamond phase. NDs affected the microstructural evolution, chemistry, and mechanical properties of WC-Co. Macroscale reciprocating pin-on-disk tests were conducted to assess wear behavior under conditions relevant to service environments, e.g., high cycles and high contact pressure. Microscale tribological properties were assessed using microscratch tests in order to investigate the intrinsic effects of ND on the localized mechanical and tribological response of WC-Co-ND composites. The incorporation of 10 vol.% ND enhanced wear resistance at both the micro- and macroscale, by 28% and 35%, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA