Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964321

RESUMEN

DNA repair is directly performed by hundreds of core factors and indirectly regulated by thousands of others. We massively expanded a CRISPR inhibition and Cas9-editing screening system to discover factors indirectly modulating homology-directed repair (HDR) in the context of ∼18,000 individual gene knockdowns. We focused on CCAR1, a poorly understood gene that we found the depletion of reduced both HDR and interstrand crosslink repair, phenocopying the loss of the Fanconi anemia pathway. CCAR1 loss abrogated FANCA protein without substantial reduction in the level of its mRNA or that of other FA genes. We instead found that CCAR1 prevents inclusion of a poison exon in FANCA. Transcriptomic analysis revealed that the CCAR1 splicing modulatory activity is not limited to FANCA, and it instead regulates widespread changes in alternative splicing that would damage coding sequences in mouse and human cells. CCAR1 therefore has an unanticipated function as a splicing fidelity factor.

2.
BMC Bioinformatics ; 22(1): 101, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653259

RESUMEN

BACKGROUND: The rapid expansion of the CRISPR toolbox through tagging effector domains to either enzymatically inactive Cas9 (dCas9) or Cas9 nickase (nCas9) has led to several promising new gene editing strategies. Recent additions include CRISPR cytosine or adenine base editors (CBEs and ABEs) and the CRISPR prime editors (PEs), in which a deaminase or reverse transcriptase are fused to nCas9, respectively. These tools hold great promise to model and correct disease-causing mutations in animal and plant models. But so far, no widely-available tools exist to automate the design of both BE and PE reagents. RESULTS: We developed PnB Designer, a web-based application for the design of pegRNAs for PEs and guide RNAs for BEs. PnB Designer makes it easy to design targeting guide RNAs for single or multiple targets on a variant or reference genome from organisms spanning multiple kingdoms. With PnB Designer, we designed pegRNAs to model all known disease causing mutations available in ClinVar. Additionally, PnB Designer can be used to design guide RNAs to install or revert a SNV, scanning the genome with one CBE and seven different ABE PAM variants and returning the best BE to use. PnB Designer is publicly accessible at http://fgcz-shiny.uzh.ch/PnBDesigner/ CONCLUSION: With PnB Designer we created a user-friendly design tool for CRISPR PE and BE reagents, which should simplify choosing editing strategy and avoiding design complications.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Kinetoplastida , Animales , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Citosina , Edición Génica , ARN Guía de Kinetoplastida/genética
3.
Int J Med Microbiol ; 310(3): 151414, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32173268

RESUMEN

Vulvovaginal candidiasis (VVC) caused by Candida albicans is a common disease worldwide. A very important C. albicans virulence factor is its ability to form biofilms on epithelium and/or on intrauterine devices promoting VVC. It has been shown that VVC has a hormonal dependency and that progesterone affects virulence traits of C. albicans cells. To understand how the acidic environment (pH 4) and progesterone (either alone and in combination) modulate C. albicans response during formation of biofilm, a transcriptomic analysis was performed together with characterization of the biofilm properties. Compared to planktonic cells, acidic biofilm-cells exhibited major changes in their transcriptome, including modifications in the expression of 286 genes that were not previously associated with biofilm formation in C. albicans. The vast majority of the genes up-regulated in the acidic biofilm cells (including those uniquely identified in our study) are known targets of Sfl1, and consistently, Sfl1 deletion is herein shown to impair the formation of acidic biofilms (pH 4). Under the acidic conditions used, the presence of progesterone reduced C. albicans biofilm biomass and structural cohesion. Transcriptomic analysis of biofilms developed in the presence of progesterone led to the identification of 65 down-regulated genes including, among others, the regulator Tec1 and several of its target genes, suggesting that the function of this transcription factor is inhibited by the presence of the hormone. Additionally, progesterone reduced the susceptibility of biofilm cells to fluconazole, consistent with an up-regulation of efflux pumps. Overall, the results of this study show that progesterone modulates C. albicans biofilm formation and genomic expression under acidic conditions, which may have implications for C. albicans pathogenicity in the vaginal environment.


Asunto(s)
Ácidos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candida albicans/genética , Perfilación de la Expresión Génica , Progesterona/farmacología , Antifúngicos/farmacología , Candidiasis Vulvovaginal/microbiología , Femenino , Fluconazol/farmacología , Proteínas Fúngicas/genética , Humanos , Concentración de Iones de Hidrógeno , Transcriptoma , Virulencia/efectos de los fármacos
4.
Nucleic Acids Res ; 45(5): 2629-2643, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28100699

RESUMEN

Complete and accurate genome assembly and annotation is a crucial foundation for comparative and functional genomics. Despite this, few complete eukaryotic genomes are available, and genome annotation remains a major challenge. Here, we present a complete genome assembly of the skin commensal yeast Malassezia sympodialis and demonstrate how proteogenomics can substantially improve gene annotation. Through long-read DNA sequencing, we obtained a gap-free genome assembly for M. sympodialis (ATCC 42132), comprising eight nuclear and one mitochondrial chromosome. We also sequenced and assembled four M. sympodialis clinical isolates, and showed their value for understanding Malassezia reproduction by confirming four alternative allele combinations at the two mating-type loci. Importantly, we demonstrated how proteomics data could be readily integrated with transcriptomics data in standard annotation tools. This increased the number of annotated protein-coding genes by 14% (from 3612 to 4113), compared to using transcriptomics evidence alone. Manual curation further increased the number of protein-coding genes by 9% (to 4493). All of these genes have RNA-seq evidence and 87% were confirmed by proteomics. The M. sympodialis genome assembly and annotation presented here is at a quality yet achieved only for a few eukaryotic organisms, and constitutes an important reference for future host-microbe interaction studies.


Asunto(s)
Proteínas Fúngicas/genética , Genoma Fúngico , Malassezia/genética , Anotación de Secuencia Molecular/métodos , Proteogenómica/métodos , Genes Fúngicos , Genoma Mitocondrial , Péptidos/genética , Dominios Proteicos , Análisis de Secuencia de ARN
5.
PLoS Genet ; 12(11): e1006404, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27806045

RESUMEN

Mating between different species produces hybrids that are usually asexual and stuck as diploids, but can also lead to the formation of new species. Here, we report the genome sequences of 27 isolates of the pathogenic yeast Candida orthopsilosis. We find that most isolates are diploid hybrids, products of mating between two unknown parental species (A and B) that are 5% divergent in sequence. Isolates vary greatly in the extent of homogenization between A and B, making their genomes a mosaic of highly heterozygous regions interspersed with homozygous regions. Separate phylogenetic analyses of SNPs in the A- and B-derived portions of the genome produces almost identical trees of the isolates with four major clades. However, the presence of two mutually exclusive genotype combinations at the mating type locus, and recombinant mitochondrial genomes diagnostic of inter-clade mating, shows that the species C. orthopsilosis does not have a single evolutionary origin but was created at least four times by separate interspecies hybridizations between parents A and B. Older hybrids have lost more heterozygosity. We also identify two isolates with homozygous genomes derived exclusively from parent A, which are pure non-hybrid strains. The parallel emergence of the same hybrid species from multiple independent hybridization events is common in plant evolution, but is much less documented in pathogenic fungi.


Asunto(s)
Candida/genética , Especiación Genética , Hibridación Genética , Filogenia , Animales , Candida/crecimiento & desarrollo , Diploidia , Genoma Fúngico , Haplotipos , Heterocigoto , Larva/genética , Mitocondrias/genética , Polimorfismo de Nucleótido Simple , Saccharomyces cerevisiae/genética
6.
PLoS Genet ; 11(11): e1005614, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26539826

RESUMEN

Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina, (Basidiomycota, fungi) that otherwise consists almost exclusively of plant pathogens. Malassezia are typically isolated from warm-blooded animals, are dominant members of the human skin mycobiome and are associated with common skin disorders. To characterize the genetic basis of the unique phenotypes of Malassezia spp., we sequenced the genomes of all 14 accepted species and used comparative genomics against a broad panel of fungal genomes to comprehensively identify distinct features that define the Malassezia gene repertoire: gene gain and loss; selection signatures; and lineage-specific gene family expansions. Our analysis revealed key gene gain events (64) with a single gene conserved across all Malassezia but absent in all other sequenced Basidiomycota. These likely horizontally transferred genes provide intriguing gain-of-function events and prime candidates to explain the emergence of Malassezia. A larger set of genes (741) were lost, with enrichment for glycosyl hydrolases and carbohydrate metabolism, concordant with adaptation to skin's carbohydrate-deficient environment. Gene family analysis revealed extensive turnover and underlined the importance of secretory lipases, phospholipases, aspartyl proteases, and other peptidases. Combining genomic analysis with a re-evaluation of culture characteristics, we establish the likely lipid-dependence of all Malassezia. Our phylogenetic analysis sheds new light on the relationship between Malassezia and other members of Ustilaginomycotina, as well as phylogenetic lineages within the genus. Overall, our study provides a unique genomic resource for understanding Malassezia niche-specificity and potential virulence, as well as their abundance and distribution in the environment and on human skin.


Asunto(s)
Adaptación Fisiológica , Genes Fúngicos , Filogenia , Piel/microbiología , Transferencia de Gen Horizontal , Humanos , Malassezia/clasificación , Malassezia/genética , Malassezia/fisiología
7.
Bioinformatics ; 32(7): 1097-9, 2016 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-26607490

RESUMEN

UNLABELLED: Breast cancer is one of the most frequent cancers among women. Extensive studies into the molecular heterogeneity of breast cancer have produced a plethora of molecular subtype classification and prognosis prediction algorithms, as well as numerous gene expression signatures. However, reimplementation of these algorithms is a tedious but important task to enable comparison of existing signatures and classification models between each other and with new models. Here, we present the genefu R/Bioconductor package, a multi-tiered compendium of bioinformatics algorithms and gene signatures for molecular subtyping and prognostication in breast cancer. AVAILABILITY AND IMPLEMENTATION: The genefu package is available from Bioconductor. http://www.bioconductor.org/packages/devel/bioc/html/genefu.html Source code is also available on Github https://github.com/bhklab/genefu CONTACT: bhaibeka@uhnresearch.ca SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Neoplasias de la Mama/genética , Transcriptoma , Femenino , Humanos , Lenguajes de Programación , Programas Informáticos
8.
PLoS Pathog ; 10(9): e1004365, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25233198

RESUMEN

Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Biomarcadores/análisis , Candida/clasificación , Candida/genética , Candidiasis/genética , Proteínas Fúngicas/genética , Candida/crecimiento & desarrollo , Candidiasis/microbiología , Perfilación de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , ARN de Hongos/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Especificidad de la Especie
9.
Mol Biol Evol ; 30(6): 1281-91, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23486613

RESUMEN

The Candida Gene Order Browser (CGOB) was developed as a tool to visualize and analyze synteny relationships in multiple Candida species, and to provide an accurate, manually curated set of orthologous Candida genes for evolutionary analyses. Here, we describe major improvements to CGOB. The underlying structure of the database has been changed significantly. Genomic features are now based directly on genome annotations rather than on protein sequences, which allows non-protein features such as centromere locations in Candida albicans and tRNA genes in all species to be included. The data set has been expanded to 13 species, including genomes of pathogens (C. albicans, C. parapsilosis, C. tropicalis, and C. orthopsilosis), and those of xylose-degrading species with important biotechnological applications (C. tenuis, Scheffersomyces stipitis, and Spathaspora passalidarum). Updated annotations of C. parapsilosis, C. dubliniensis, and Debaryomyces hansenii have been incorporated. We discovered more than 1,500 previously unannotated genes among the 13 genomes, ranging in size from 29 to 3,850 amino acids. Poorly conserved and rapidly evolving genes were also identified. Re-analysis of the mating type loci of the xylose degraders suggests that C. tenuis is heterothallic, whereas both Spa. passalidarum and S. stipitis are homothallic. As well as hosting the browser, the CGOB website (http://cgob.ucd.ie) gives direct access to all the underlying genome annotations, sequences, and curated orthology data.


Asunto(s)
Candida/genética , Bases de Datos Genéticas , Genes Fúngicos , Genoma Fúngico , Genómica/métodos , Programas Informáticos , Secuencia de Aminoácidos , Candida/clasificación , Modelos Teóricos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Interfaz Usuario-Computador
10.
Bioinformatics ; 29(5): 666-8, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23297033

RESUMEN

SUMMARY: The R/Bioconductor package RamiGO is an R interface to AmiGO that enables visualization of Gene Ontology (GO) trees. Given a list of GO terms, RamiGO uses the AmiGO visualize API to import Graphviz-DOT format files into R, and export these either as images (SVG, PNG) or into Cytoscape for extended network analyses. RamiGO provides easy customization of annotation, highlighting of specific GO terms, colouring of terms by P-value or export of a simplified summary GO tree. We illustrate RamiGO functionalities in a genome-wide gene set analysis of prognostic genes in breast cancer. AVAILABILITY AND IMPLEMENTATION: RamiGO is provided in R/Bioconductor, is open source under the Artistic-2.0 License and is available with a user manual containing installation, operating instructions and tutorials. It requires R version 2.15.0 or higher. URL: http://bioconductor.org/packages/release/bioc/html/RamiGO.html


Asunto(s)
Genes , Programas Informáticos , Vocabulario Controlado , Neoplasias de la Mama/genética , Gráficos por Computador , Femenino , Humanos , Internet , Transcriptoma , Interfaz Usuario-Computador
11.
Nucleic Acids Res ; 40(Database issue): D1060-6, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22110038

RESUMEN

GeneSigDB (http://www.genesigdb.org or http://compbio.dfci.harvard.edu/genesigdb/) is a database of gene signatures that have been extracted and manually curated from the published literature. It provides a standardized resource of published prognostic, diagnostic and other gene signatures of cancer and related disease to the community so they can compare the predictive power of gene signatures or use these in gene set enrichment analysis. Since GeneSigDB release 1.0, we have expanded from 575 to 3515 gene signatures, which were collected and transcribed from 1604 published articles largely focused on gene expression in cancer, stem cells, immune cells, development and lung disease. We have made substantial upgrades to the GeneSigDB website to improve accessibility and usability, including adding a tag cloud browse function, facetted navigation and a 'basket' feature to store genes or gene signatures of interest. Users can analyze GeneSigDB gene signatures, or upload their own gene list, to identify gene signatures with significant gene overlap and results can be viewed on a dynamic editable heatmap that can be downloaded as a publication quality image. All data in GeneSigDB can be downloaded in numerous formats including .gmt file format for gene set enrichment analysis or as a R/Bioconductor data file. GeneSigDB is available from http://www.genesigdb.org.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Animales , Expresión Génica , Humanos , Ratones , Ratas , Interfaz Usuario-Computador
12.
NAR Cancer ; 5(3): zcad048, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37681034

RESUMEN

Nonsense-mediated mRNA decay (NMD) is a eukaryotic RNA decay pathway with roles in cellular stress responses, differentiation, and viral defense. It functions in both quality control and post-transcriptional regulation of gene expression. NMD has also emerged as a modulator of cancer progression, although available evidence supports both a tumor suppressor and a pro-tumorigenic role, depending on the model. To further investigate the role of NMD in cancer, we knocked out the NMD factor SMG7 in the HT1080 human fibrosarcoma cell line, resulting in suppression of NMD function. We then compared the oncogenic properties of the parental cell line, the SMG7-knockout, and a rescue cell line in which we re-introduced both isoforms of SMG7. We also tested the effect of a drug inhibiting the NMD factor SMG1 to distinguish NMD-dependent effects from putative NMD-independent functions of SMG7. Using cell-based assays and a mouse xenograft tumor model, we showed that suppression of NMD function severely compromises the oncogenic phenotype. Molecular pathway analysis revealed that NMD suppression strongly reduces matrix metalloprotease 9 (MMP9) expression and that MMP9 re-expression partially rescues the oncogenic phenotype. Since MMP9 promotes cancer cell migration and invasion, metastasis and angiogenesis, its downregulation may contribute to the reduced tumorigenicity of NMD-suppressed cells. Collectively, our results highlight the potential value of NMD inhibition as a therapeutic approach.

13.
J Exp Med ; 220(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37773046

RESUMEN

Targeted eradication of transformed or otherwise dysregulated cells using monoclonal antibodies (mAb), antibody-drug conjugates (ADC), T cell engagers (TCE), or chimeric antigen receptor (CAR) cells is very effective for hematologic diseases. Unlike the breakthrough progress achieved for B cell malignancies, there is a pressing need to find suitable antigens for myeloid malignancies. CD123, the interleukin-3 (IL-3) receptor alpha-chain, is highly expressed in various hematological malignancies, including acute myeloid leukemia (AML). However, shared CD123 expression on healthy hematopoietic stem and progenitor cells (HSPCs) bears the risk for myelotoxicity. We demonstrate that epitope-engineered HSPCs were shielded from CD123-targeted immunotherapy but remained functional, while CD123-deficient HSPCs displayed a competitive disadvantage. Transplantation of genome-edited HSPCs could enable tumor-selective targeted immunotherapy while rebuilding a fully functional hematopoietic system. We envision that this approach is broadly applicable to other targets and cells, could render hitherto undruggable targets accessible to immunotherapy, and will allow continued posttransplant therapy, for instance, to treat minimal residual disease (MRD).


Asunto(s)
Subunidad alfa del Receptor de Interleucina-3 , Leucemia Mieloide Aguda , Humanos , Subunidad alfa del Receptor de Interleucina-3/metabolismo , Epítopos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Inmunoterapia , Células Madre Hematopoyéticas/metabolismo , Inmunoterapia Adoptiva
14.
Bioinformatics ; 27(22): 3206-8, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21903630

RESUMEN

SUMMARY: The survcomp package provides functions to assess and statistically compare the performance of survival/risk prediction models. It implements state-of-the-art statistics to (i) measure the performance of risk prediction models; (ii) combine these statistical estimates from multiple datasets using a meta-analytical framework; and (iii) statistically compare the performance of competitive models.


Asunto(s)
Programas Informáticos , Análisis de Supervivencia , Neoplasias de la Mama/mortalidad , Femenino , Humanos , Metaanálisis como Asunto , Modelos Estadísticos
15.
Nat Commun ; 13(1): 4550, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931681

RESUMEN

CRISPR-Cas induced homology-directed repair (HDR) enables the installation of a broad range of precise genomic modifications from an exogenous donor template. However, applications of HDR in human cells are often hampered by poor efficiency, stemming from a preference for error-prone end joining pathways that yield short insertions and deletions. Here, we describe Recursive Editing, an HDR improvement strategy that selectively retargets undesired indel outcomes to create additional opportunities to produce the desired HDR allele. We introduce a software tool, named REtarget, that enables the rational design of Recursive Editing experiments. Using REtarget-designed guide RNAs in single editing reactions, Recursive Editing can simultaneously boost HDR efficiencies and reduce undesired indels. We also harness REtarget to generate databases for particularly effective Recursive Editing sites across the genome, to endogenously tag proteins, and to target pathogenic mutations. Recursive Editing constitutes an easy-to-use approach without potentially deleterious cell manipulations and little added experimental burden.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Humanos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Reparación del ADN por Recombinación
17.
Cell Rep ; 32(9): 108093, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877675

RESUMEN

Genome editing often takes the form of either error-prone sequence disruption by non-homologous end joining (NHEJ) or sequence replacement by homology-directed repair (HDR). Although NHEJ is generally effective, HDR is often difficult in primary cells. Here, we use a combination of immunophenotyping, next-generation sequencing, and single-cell RNA sequencing to investigate and reprogram genome editing outcomes in subpopulations of adult hematopoietic stem and progenitor cells. We find that although quiescent stem-enriched cells mostly use NHEJ, non-quiescent cells with the same immunophenotype use both NHEJ and HDR. Inducing quiescence before editing results in a loss of HDR in all cell subtypes. We develop a strategy of controlled cycling and quiescence that yields a 6-fold increase in the HDR/NHEJ ratio in quiescent stem cells ex vivo and in vivo. Our results highlight the tension between editing and cellular physiology and suggest strategies to manipulate quiescent cells for research and therapeutic genome editing.


Asunto(s)
Sistemas CRISPR-Cas/genética , Factor de Transcripción GATA3/metabolismo , Edición Génica/métodos , Terapia Genética/métodos , Células Madre Hematopoyéticas/metabolismo , Reparación del ADN por Recombinación/genética , Células Madre/metabolismo , Humanos
18.
Cell Rep ; 32(5): 107993, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32755585

RESUMEN

ß-Hemoglobinopathies can trigger rapid production of red blood cells in a process known as stress erythropoiesis. Cellular stress prompts differentiating erythroid precursors to express high levels of fetal γ-globin. However, the mechanisms underlying γ-globin production during cellular stress are still poorly defined. Here, we use CRISPR-Cas genome editing to model the stress caused by reduced levels of adult ß-globin. We find that decreased ß-globin is sufficient to induce robust re-expression of γ-globin, and RNA sequencing (RNA-seq) of differentiating isogenic erythroid precursors implicates ATF4 as a causal regulator of this response. ATF4 binds within the HBS1L-MYB intergenic enhancer and regulates expression of MYB, a known γ-globin regulator. Overall, the reduction of ATF4 upon ß-globin knockout decreases the levels of MYB and BCL11A. Identification of ATF4 as a key regulator of globin compensation adds mechanistic insight to the poorly understood phenomenon of stress-induced globin compensation and could inform strategies to treat hemoglobinopathies.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Regulación de la Expresión Génica , Proteínas Proto-Oncogénicas c-myb/genética , Globinas beta/metabolismo , gamma-Globinas/genética , Factor de Transcripción Activador 4/genética , Secuencia de Bases , Diferenciación Celular/genética , Línea Celular , ADN Intergénico/genética , Regulación hacia Abajo/genética , Elementos de Facilitación Genéticos/genética , Hemoglobina Fetal/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Mutación/genética , Unión Proteica , Proteínas Proto-Oncogénicas c-myb/metabolismo , Proteínas Represoras/metabolismo , Factores de Tiempo , Transcripción Genética , Transcriptoma/genética , Regulación hacia Arriba/genética , gamma-Globinas/metabolismo
19.
Nat Commun ; 11(1): 4225, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32839463

RESUMEN

Gallbladder cancer (GBC) is an aggressive gastrointestinal malignancy with no approved targeted therapy. Here, we analyze exomes (n = 160), transcriptomes (n = 115), and low pass whole genomes (n = 146) from 167 gallbladder cancers (GBCs) from patients in Korea, India and Chile. In addition, we also sequence samples from 39 GBC high-risk patients and detect evidence of early cancer-related genomic lesions. Among the several significantly mutated genes not previously linked to GBC are ETS domain genes ELF3 and EHF, CTNNB1, APC, NSD1, KAT8, STK11 and NFE2L2. A majority of ELF3 alterations are frame-shift mutations that result in several cancer-specific neoantigens that activate T-cells indicating that they are cancer vaccine candidates. In addition, we identify recurrent alterations in KEAP1/NFE2L2 and WNT pathway in GBC. Taken together, these define multiple targetable therapeutic interventions opportunities for GBC treatment and management.


Asunto(s)
Proteínas de Unión al ADN/genética , Mutación del Sistema de Lectura , Neoplasias de la Vesícula Biliar/genética , Predisposición Genética a la Enfermedad/genética , Proteínas Proto-Oncogénicas c-ets/genética , Factores de Transcripción/genética , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/inmunología , Chile , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Neoplasias de la Vesícula Biliar/diagnóstico , Neoplasias de la Vesícula Biliar/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Humanos , India , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-ets/inmunología , Proteínas Proto-Oncogénicas c-ets/metabolismo , República de Corea , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
20.
Nat Genet ; 52(1): 106-117, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31907489

RESUMEN

Snakebite envenoming is a serious and neglected tropical disease that kills ~100,000 people annually. High-quality, genome-enabled comprehensive characterization of toxin genes will facilitate development of effective humanized recombinant antivenom. We report a de novo near-chromosomal genome assembly of Naja naja, the Indian cobra, a highly venomous, medically important snake. Our assembly has a scaffold N50 of 223.35 Mb, with 19 scaffolds containing 95% of the genome. Of the 23,248 predicted protein-coding genes, 12,346 venom-gland-expressed genes constitute the 'venom-ome' and this included 139 genes from 33 toxin families. Among the 139 toxin genes were 19 'venom-ome-specific toxins' (VSTs) that showed venom-gland-specific expression, and these probably encode the minimal core venom effector proteins. Synthetic venom reconstituted through recombinant VST expression will aid in the rapid development of safe and effective synthetic antivenom. Additionally, our genome could serve as a reference for snake genomes, support evolutionary studies and enable venom-driven drug discovery.


Asunto(s)
Biología Computacional/métodos , Venenos Elapídicos/análisis , Venenos Elapídicos/genética , Genoma , Naja naja/genética , Transcriptoma , Secuencia de Aminoácidos , Animales , Perfilación de la Expresión Génica , India , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA