Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Chem Phys ; 148(12): 123328, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29604857

RESUMEN

Single molecule Förster resonance energy transfer (smFRET) is a popular tool to study biological systems that undergo topological transitions on the nanometer scale. smFRET experiments typically require recording of long smFRET trajectories and subsequent statistical analysis to extract parameters such as the states' lifetimes. Alternatively, analysis of probability distributions exploits the shapes of smFRET distributions at well chosen exposure times and hence works without the acquisition of time traces. Here, we describe a variant that utilizes statistical tests to compare experimental datasets with Monte Carlo simulations. For a given model, parameters are varied to cover the full realistic parameter space. As output, the method yields p-values which quantify the likelihood for each parameter setting to be consistent with the experimental data. The method provides suitable results even if the actual lifetimes differ by an order of magnitude. We also demonstrated the robustness of the method to inaccurately determine input parameters. As proof of concept, the new method was applied to the determination of transition rate constants for Holliday junctions.


Asunto(s)
Modelos Biológicos , Transferencia Resonante de Energía de Fluorescencia/métodos , Cinética , Método de Montecarlo
2.
Molecules ; 23(12)2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30562966

RESUMEN

Single molecule localization microscopy is currently revolutionizing the life sciences as it offers, for the first time, insights into the organization of biological samples below the classical diffraction limit of light microscopy. While there have been numerous examples of new biological findings reported in the last decade, the technique could not reach its full potential due to a set of limitations immanent to the samples themselves. Particularly, high background signals impede the proper performance of most single-molecule identification and localization algorithms. One option is to exploit the characteristic blinking of single molecule signals, which differs substantially from the residual brightness fluctuations of the fluorescence background. To pronounce single molecule signals, we used a temporal high-pass filtering in Fourier space on a pixel-by-pixel basis. We evaluated the performance of temporal filtering by assessing statistical parameters such as true positive rate and false discovery rate. For this, ground truth signals were generated by simulations and overlaid onto experimentally derived movies of samples with high background signals. Compared to the nonfiltered case, we found an improvement of the sensitivity by up to a factor 3.5 while no significant change in the localization accuracy was observable.


Asunto(s)
Algoritmos , Proteínas Fluorescentes Verdes , Imagen Individual de Molécula , Imagen Individual de Molécula/métodos
3.
Methods Mol Biol ; 2800: 147-165, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709483

RESUMEN

Molecular forces are increasingly recognized as an important parameter to understand cellular signaling processes. In the recent years, evidence accumulated that also T-cells exert tensile forces via their T-cell receptor during the antigen recognition process. To measure such intercellular pulling forces, one can make use of the elastic properties of spider silk peptides, which act similar to Hookean springs: increased strain corresponds to increased stress applied to the peptide. Combined with Förster resonance energy transfer (FRET) to read out the strain, such peptides represent powerful and versatile nanoscopic force sensing tools. In this paper, we provide a detailed protocol how to synthesize a molecular force sensor for application in T-cell antigen recognition and hands-on guidelines on experiments and analysis of obtained single molecule FRET data.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Imagen Individual de Molécula/métodos , Animales , Péptidos/química , Péptidos/inmunología , Péptidos/metabolismo , Seda/química
4.
Front Immunol ; 13: 886328, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693808

RESUMEN

Efficient scanning of tissue that T cells encounter during their migratory life is pivotal to protective adaptive immunity. In fact, T cells can detect even a single antigenic peptide/MHC complex (pMHC) among thousands of structurally similar yet non-stimulatory endogenous pMHCs on the surface of antigen-presenting cells (APCs) or target cells. Of note, the glycocalyx of target cells, being composed of proteoglycans and bulky proteins, is bound to affect and even modulate antigen recognition by posing as a physical barrier. T cell-resident microvilli are actin-rich membrane protrusions that puncture through such barriers and thereby actively place the considerably smaller T-cell antigen receptors (TCRs) in close enough proximity to APC-presented pMHCs so that productive interactions may occur efficiently yet under force. We here review our current understanding of how the plasticity of T-cell microvilli and physicochemical properties of the glycocalyx may affect early events in T-cell activation. We assess insights gained from studies on T-cell plasma membrane ultrastructure and provide an update on current efforts to integrate biophysical aspects such as the amplitude and directionality of TCR-imposed mechanical forces and the distribution and lateral mobility of plasma membrane-resident signaling molecules into a more comprehensive view on sensitized T-cell antigen recognition.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Linfocitos T , Células Presentadoras de Antígenos , Antígenos/metabolismo , Activación de Linfocitos , Unión Proteica
5.
J Vis Exp ; (177)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34897275

RESUMEN

Single-molecule Förster resonance energy transfer (smFRET) is a versatile technique reporting on distances in the sub-nanometer to nanometer range. It has been used in a wide range of biophysical and molecular biological experiments, including the measurement of molecular forces, characterization of conformational dynamics of biomolecules, observation of intracellular colocalization of proteins, and determination of receptor-ligand interaction times. In a widefield microscopy configuration, experiments are typically performed using surface-immobilized probes. Here, a method combining single-molecule tracking with alternating excitation (ALEX) smFRET experiments is presented, permitting the acquisition of smFRET time traces of surface-bound, yet mobile probes in plasma membranes or glass-supported lipid bilayers. For the analysis of recorded data, an automated, open-source software collection was developed supporting (i) the localization of fluorescent signals, (ii) single-particle tracking, (iii) determination of FRET-related quantities including correction factors, (iv) stringent verification of smFRET traces, and (v) intuitive presentation of the results. The generated data can conveniently be used as input for further exploration via specialized software, e.g., for the assessment of the diffusional behavior of probes or the investigation of FRET transitions.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Imagen Individual de Molécula , Transferencia Resonante de Energía de Fluorescencia/métodos , Nanotecnología , Imagen Individual de Molécula/métodos , Programas Informáticos , Análisis Espacio-Temporal
6.
Nat Commun ; 12(1): 2502, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947864

RESUMEN

Mechanical forces acting on ligand-engaged T-cell receptors (TCRs) have previously been implicated in T-cell antigen recognition, yet their magnitude, spread, and temporal behavior are still poorly defined. We here report a FRET-based sensor equipped either with a TCR-reactive single chain antibody fragment or peptide-loaded MHC, the physiological TCR-ligand. The sensor was tethered to planar glass-supported lipid bilayers (SLBs) and informed most directly on the magnitude and kinetics of TCR-imposed forces at the single molecule level. When confronting T-cells with gel-phase SLBs we observed both prior and upon T-cell activation a single, well-resolvable force-peak of approximately 5 pN and force loading rates on the TCR of 1.5 pN per second. When facing fluid-phase SLBs instead, T-cells still exerted tensile forces yet of threefold reduced magnitude and only prior to but not upon activation.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Antígenos de Histocompatibilidad/química , Receptores de Antígenos de Linfocitos T/química , Imagen Individual de Molécula/métodos , Anticuerpos de Cadena Única/química , Animales , Linfocitos T CD4-Positivos/química , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/química , Linfocitos T CD8-positivos/inmunología , Citocromos c/química , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Antígenos de Histocompatibilidad/inmunología , Cinética , Ligandos , Membrana Dobles de Lípidos/química , Ratones , Péptidos/química , Receptores de Antígenos de Linfocitos T/inmunología , Imagen Individual de Molécula/instrumentación , Anticuerpos de Cadena Única/inmunología , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA