Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 92(5): 2051-2064, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39004838

RESUMEN

PURPOSE: For reliable DCE MRI parameter estimation, k-space undersampling is essential to meet resolution, coverage, and signal-to-noise requirements. Pseudo-spiral (PS) sampling achieves this by sampling k-space on a Cartesian grid following a spiral trajectory. The goal was to optimize PS k-space sampling patterns for abdomin al DCE MRI. METHODS: The optimal PS k-space sampling pattern was determined using an anthropomorphic digital phantom. Contrast agent inflow was simulated in the liver, spleen, pancreas, and pancreatic ductal adenocarcinoma (PDAC). A total of 704 variable sampling and reconstruction approaches were created using three algorithms using different parametrizations to control sampling density, halfscan and compressed sensing regularization. The sampling patterns were evaluated based on image quality scores and the accuracy and precision of the DCE pharmacokinetic parameters. The best and worst strategies were assessed in vivo in five healthy volunteers without contrast agent administration. The best strategy was tested in a DCE scan of a PDAC patient. RESULTS: The best PS reconstruction was found to be PS-diffuse based, with quadratic distribution of readouts on a spiral, without random shuffling, halfscan factor of 0.8, and total variation regularization of 0.05 in the spatial and temporal domains. The best scoring strategy showed sharper images with less prominent artifacts in healthy volunteers compared to the worst strategy. Our suggested DCE sampling strategy also showed high quality DCE images in the PDAC patient. CONCLUSION: Using an anthropomorphic digital phantom, we identified an optimal PS sampling strategy for abdominal DCE MRI, and demonstrated feasibility in a PDAC patient.


Asunto(s)
Abdomen , Algoritmos , Medios de Contraste , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Neoplasias Pancreáticas , Fantasmas de Imagen , Humanos , Imagen por Resonancia Magnética/métodos , Medios de Contraste/química , Abdomen/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Pancreáticas/diagnóstico por imagen , Páncreas/diagnóstico por imagen , Hígado/diagnóstico por imagen , Relación Señal-Ruido , Carcinoma Ductal Pancreático/diagnóstico por imagen , Adulto , Masculino , Bazo/diagnóstico por imagen , Voluntarios Sanos , Femenino , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados
2.
J Magn Reson Imaging ; 59(2): 688-698, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37194646

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) stromal disposition is thought to influence chemotherapy efficacy and increase tissue stiffness, which could be quantified noninvasively via MR elastography (MRE). Current methods cause position-based errors in pancreas location over time, hampering accuracy. It would be beneficial to have a single breath-hold acquisition. PURPOSE: To develop and test a single breath-hold three-dimensional MRE technique utilizing prospective undersampling and a compressed sensing reconstruction (CS-MRE). STUDY TYPE: Prospective. POPULATION: A total of 30 healthy volunteers (HV) (31 ± 9 years; 33% male) and five patients with PDAC (69 ± 5 years; 80% male). FIELD STRENGTH/SEQUENCE: 3-T, GRE Ristretto MRE. ASSESSMENT: First, optimization of multi breath-hold MRE was done in 10 HV using four combinations of vibration frequency, number of measured wave-phase offsets, and TE and looking at MRE quality measures in the pancreas head. Second, viscoelastic parameters delineated in the pancreas head or tumor of CS-MRE were compared against (I) 2D and (II) 3D four breath-hold acquisitions in HV (N = 20) and PDAC patients. Intrasession repeatability was assessed for CS-MRE in a subgroup of healthy volunteers (N = 15). STATISTICAL TESTS: Tests include repeated measures analysis of variance (ANOVA), Bland-Altman analysis, and coefficients of variation (CoVs). A P-value <.05 was considered statistically significant. RESULTS: Optimization of the four breath-hold acquisitions resulted in 40 Hz vibration frequency, five wave-phases, and echo time (TE) = 6.9 msec as the preferred method (4BH-MRE). CS-MRE quantitative results did not differ from 4BH-MRE. Shear wave speed (SWS) and phase angle differed significantly between HV and PDAC patients using 4BH-MRE or CS-MRE. The limits of agreement for SWS were [-0.09, 0.10] m/second and the within-subject CoV was 4.8% for CS-MRE. DATA CONCLUSION: CS-MRE might allow a single breath-hold MRE acquisition with comparable SWS and phase angle as 4BH-MRE, and it may still enable to differentiate between HV and PDAC. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 2.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Neoplasias Pancreáticas , Humanos , Masculino , Femenino , Estudios Prospectivos , Diagnóstico por Imagen de Elasticidad/métodos , Reproducibilidad de los Resultados , Contencion de la Respiración , Páncreas/diagnóstico por imagen , Neoplasias Pancreáticas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
3.
J Magn Reson Imaging ; 59(5): 1582-1592, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37485870

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) stromal viscoelasticity can be measured using MR elastography (MRE). Bowel preparation regimens could affect MRE quality and knowledge on repeatability is crucial for clinical implementation. PURPOSE: To assess effects of four bowel preparation regimens on MRE quality and to evaluate repeatability and differentiate patients from healthy controls. STUDY TYPE: Prospective. POPULATION: 15 controls (41 ± 16 years; 47% female), 16 PDAC patients (one excluded, 66 ± 12 years; 40% female) with 15 age-/sex-matched controls (65 ± 11 years; 40% female). Final sample size was 25 controls and 15 PDAC. FIELD STRENGTH/SEQUENCE: 3-T, spin-echo echo-planar-imaging, turbo spin-echo, and fast field echo gradient-echo. ASSESSMENT: Four different regimens were used: fasting; scopolaminebutyl; drinking 0.5 L water; combination of 0.5 L water and scopolaminebutyl. MRE signal-to-noise ratio (SNR) was compared between all regimens. MRE repeatability (test-retest) and differences in shear wave speed (SWS) and phase angle (ϕ) were assessed in PDAC and controls. Regions-of-interest were defined for tumor, nontumorous (n = 8) tissue in PDAC, and whole pancreas in controls. Two radiologists delineated tumors twice for evaluation of intraobserver and interobserver variability. STATISTICAL TESTS: Repeated measures analysis of variance, coefficients of variation (CoVs), Bland-Altman analysis, (un)paired t-test, Mann-Whitney U-test, and Wilcoxon signed-rank test. P-value<0.05 was considered statistically significant. RESULTS: Preparation regimens did not significantly influence MRE-SNR. Therefore, the least burdensome preparation (fasting only) was continued. CoVs for tumor SWS were: intrasession (12.8%) and intersession (21.7%), and intraobserver (7.9%) and interobserver (10.3%) comparisons. For controls, CoVs were intrasession (4.6%) and intersession (6.4%). Average SWS for tumor, nontumor, and healthy tissue were: 1.74 ± 0.58, 1.38 ± 0.27, and 1.18 ± 0.16 m/sec (ϕ: 1.02 ± 0.17, 0.91 ± 0.07, and 0.85 ± 0.08 rad), respectively. Significant differences were found between all groups, except for ϕ between healthy-nontumor (P = 0.094). DATA CONCLUSION: The proposed bowel preparation regimens may not influence MRE quality. MRE may be able to differentiate between healthy tissue-tumor and tumor-nontumor. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Neoplasias Pancreáticas , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Imagen por Resonancia Magnética/métodos , Diagnóstico por Imagen de Elasticidad/métodos , Estudios Prospectivos , Páncreas/diagnóstico por imagen , Neoplasias Pancreáticas/diagnóstico por imagen , Reproducibilidad de los Resultados , Agua
4.
J Cardiovasc Magn Reson ; : 101089, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218220

RESUMEN

PURPOSE: To apply free-running three-dimensional (3D) cine balanced steady state free precession (bSSFP) CMR framework in combination with AI segmentations to quantify time-resolved aortic displacement, diameter and diameter change. METHODS: In this prospective study, we implemented a free-running 3D cine bSSFP sequence with scan time of about 4minutes facilitated by pseudo-spiral Cartesian undersampling and compressed-sensing reconstruction. Automated segmentation of all cardiac timeframes was applied through the use of nnU-Net. Dynamic 3D motion maps were created for three repeated scans per volunteer, leading to the detailed quantification of motion, as well as the measurement and change in diameter of the ascending aorta. RESULTS: A total of 14 adult healthy volunteers (median age, 28 years (IQR: 26.0-31.3), 6 female) were included. Automated segmentation compared to manual segmentation of the aorta test set showed a Dice score of 0.93 ± 0.02. The median (interquartile range) over all volunteers for the largest maximum and mean ascending aorta (AAo) displacement in the first scan was 13.0 (4.4) mm and 5.6 (2.4) mm, respectively. Peak mean diameter in the AAo was 25.9 (2.2) mm and peak mean diameter change was 1.4 (0.5) mm. The maximum individual variability over the three repeated scans of maximum and mean AAo displacement was 3.9 (1.6) mm and 2.2 (0.8) mm, respectively. The maximum individual variability of mean diameter and diameter change were 1.2 (0.5) mm and 0.9 (0.4) mm. CONCLUSION: A free-running 3D cine bSSFP CMR scan with a scan time of four minutes combined with an automated nnU-net segmentation consistently captured the aorta's cardiac motion-related 4D displacement, diameter, and diameter change.

5.
J Magn Reson Imaging ; 55(6): 1696-1707, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35312203

RESUMEN

BACKGROUND: Evaluation of structural lung abnormalities with magnetic resonance imaging (MRI) has previously been shown to be predictive of clinical neonatal outcomes in preterm birth. MRI during free-breathing with phase-resolved functional lung (PREFUL) may allow for complimentary functional information without exogenous contrast. PURPOSE: To investigate the feasibility of structural and functional pulmonary MRI in a cohort of neonates and infants with no cardiorespiratory disease. Macrovascular pulmonary blood flows were also evaluated. STUDY TYPE: Prospective. POPULATION: Ten term infants with no clinically defined cardiorespiratory disease were imaged. Infants recruited from the general population and neonatal intensive care unit (NICU) were studied. FIELD STRENGTH/SEQUENCE: T1 -weighted VIBE, T2 -weighted BLADE uncorrected for motion. Ultrashort echo time (UTE) and 3D-flow data were acquired during free-breathing with self-navigation and retrospective reconstruction. Single slice 2D-gradient echo (GRE) images were acquired during free-breathing for PREFUL analysis. Imaging was performed at 3 T. ASSESSMENT: T1 , T2 , and UTE images were scored according to the modified Ochiai scheme by three pediatric body radiologists. Ventilation/perfusion-weighted maps were extracted from free-breathing GRE images using PREFUL analysis. Ventilation and perfusion defect percent (VDP, QDP) were calculated from the segmented ventilation and perfusion-weighted maps. Time-averaged cardiac blood velocities from three-dimensional-flow were evaluated in major pulmonary arteries and veins. STATISTICAL TEST: Intraclass correlation coefficient (ICC). RESULTS: The ICC of replicate structural scores was 0.81 (95% CI: 0.45-0.95) across three observers. Elevated Ochiai scores, VDP, and QDP were observed in two NICU participants. Excluding these participants, mean ± standard deviation structural scores were 1.2 ± 0.8, while VDP and QDP were 1.0% ± 1.1% and 0.4% ± 0.5%, respectively. Main pulmonary arterial blood flows normalized to body surface area were 3.15 ± 0.78 L/min/m2 . DATA CONCLUSION: Structural and functional pulmonary imaging is feasible using standard clinical MRI hardware (commercial whole-body 3 T scanner, table spine array, and flexible thoracic array) in free-breathing infants. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Nacimiento Prematuro , Niño , Estudios de Factibilidad , Femenino , Humanos , Imagenología Tridimensional , Recién Nacido , Pulmón , Imagen por Resonancia Magnética , Embarazo , Estudios Prospectivos , Estudios Retrospectivos
6.
J Magn Reson Imaging ; 53(2): 540-551, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32815242

RESUMEN

BACKGROUND: Phase contrast MRI in the great vessels is a potential clinical tool for managing fetal pathologies. One challenge is the uncontrollable fetal motion, potentially corrupting flow quantifications. PURPOSE: To demonstrate improvements in fetal blood flow quantification in great vessels using retrospectively motion-corrected golden-angle radial phase contrast MRI relative to Cartesian phase contrast MRI. STUDY TYPE: Method comparison. PHANTOM/SUBJECTS: Computer simulation. Seventeen pregnant volunteers. FIELD STRENGTH/SEQUENCE: 1.5T and 3T. Cartesian and golden-angle radial phase contrast MRI. ASSESSMENT: Through computer simulations, radial (with and without retrospective motion correction) and Cartesian phase contrast MRI were compared using flow deviations. in vivo Cartesian and radial phase contrast MRI measurements and reconstruction qualities were compared in pregnancies. Cartesian data were reconstructed into gated reconstructions (CINEs) after cardiac gating with metric optimized gating (MOG). For radial data, real-time reconstructions were performed for motion correction and MOG followed by CINE reconstructions. STATISTICAL TESTS: Wilcoxon signed-rank test. Linear regression. Bland-Altman plots. Student's t-test. RESULTS: Simulations showed significant improvements (P < 0.05) in flow accuracy and reconstruction quality with motion correction ([mean/peak] flow errors with ±5 mm motion corruption: Cartesian [35 ± 1/115 ± 7] mL/s, motion uncorrected radial [25 ± 1/75 ± 2] mL/s and motion-corrected radial [1.0 ± 0.5/-5 ± 1] mL/s). in vivo Cartesian reconstructions without motion correction had lower quality than the motion-corrected radial reconstructions (P < 0.05). Across all fetal mean flow measurements, the bias [limits of agreement] between the two measurements were -0.2 [-76, 75] mL/min/kg, while the linear regression coefficients were (Mradial = 0.81 × MCartesian + 29.8 [mL/min/kg], r2 = 0.67). The corresponding measures for the peak fetal flows were -23 [-214, 167] mL/min/kg and (Pradial = 0.95 × PCartesian -1.2 [mL/min/kg], r2 = 0.80). Cartesian reconstructions of low quality showed significantly higher estimated mean and peak (P < 0.05) flows than the corresponding radial reconstructions. DATA CONCLUSION: Simulations showed that radial phase contrast MRI with motion compensation improved flow accuracy. For fetal measurements, motion-corrected radial reconstructions showed better image quality than, and different flow values from, Cartesian reconstructions. Level of Evidence 1. Technical Efficacy Stage 1. J. MAGN. RESON. IMAGING 2021;53:540-551.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Simulación por Computador , Femenino , Humanos , Movimiento (Física) , Embarazo , Reproducibilidad de los Resultados , Estudios Retrospectivos
7.
J Physiol ; 598(21): 4957-4967, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32776527

RESUMEN

KEY POINTS: The ductus venosus (DV) is a dynamic fetal shunt that allows substrate-rich blood from the umbilical vein to bypass the hepatic circulation. In vitro studies suggest a direct role of prostaglandin I2 (PGI2 ) in the regulation of DV tone; however, the extent of this regulation has not been determined in utero. 4D flow and T2 oximetry magnetic resonance imaging can be combined to determine blood flow and oxygen delivery within the fetal circulation. PGI2 increases DV shunting of substrate-rich blood but this does not increase cerebral oxygen delivery. ABSTRACT: During fetal development, the maintenance of adequate oxygen and nutrient supply to vital organs is regulated through specialized fetal shunts. One of these shunts, the ductus venosus (DV), allows oxygen-rich blood to preferentially stream from the placenta toward the heart and brain. Herein, we combine magnetic resonance imaging (MRI) techniques that measure blood flow (4D flow) and oxygen saturation (T2 oximetry) in the fetal circuit to determine whether umbilical vein infusion of prostaglandin I2 (PGI2 , regulator of DV tone ex utero) directly dilates the DV and thus increases the preferential streaming of oxygen-rich blood toward the brain. At 114-115 days gestational age (dGA; term = 150 days), fetal sheep (n = 6) underwent surgery to implant vascular catheters in the fetal femoral artery, femoral vein, amniotic cavity and umbilical vein. Fetal MRI scans were performed at 119-124 dGA. 4D flow and T2 oximetry were performed to measure blood flow and oxygen saturation across the fetal circulation in both a basal state and whilst the fetus was receiving a continuous infusion of PGI2 . The proportion of oxygenated blood that passed through the DV from the umbilical vein was increased by PGI2 . Cerebral oxygen delivery was unchanged in the PGI2 state. This may be a result of decreased flow from the right to left side of the heart as blood flow through the foramen ovale was decreased by PGI2 . We have shown that although PGI2 acts on the DV to increase the proportion of oxygen-rich blood that bypasses the liver, this does not increase cerebral oxygen delivery in the fetal sheep.


Asunto(s)
Epoprostenol , Oxígeno , Animales , Velocidad del Flujo Sanguíneo , Femenino , Feto , Embarazo , Ovinos , Venas Umbilicales
8.
J Physiol ; 598(17): 3555-3567, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32533704

RESUMEN

KEY POINTS: The comprehensive visualization and quantification of in vivo fetal hepatic haemodynamics, particularly the shunting of ductus venosus blood, has been elusive and is not yet fully understood. We introduce the combination of chronically instrumented fetal sheep and 4D flow MRI of the whole fetal liver, which allows retrospective blood flow measurement in all visible vessels as well as qualitative assessment. The applicability and usefulness of this technique is exhibited in normally grown fetal Merino sheep in mid- and late-gestation with detailed dynamic distribution of hepatic blood flow presented. The feasibility of this approach in clinical pathology is demonstrated in two growth-restricted fetuses at mid-gestation. Further exemplification of blood flow quantification is performed over major hepatic vessels. ABSTRACT: Although the fetal vasculature has been demarcated and well understood for several decades, the corresponding haemodynamics permitting oxygen- and nutrient-rich blood delivery to the fetal organs has been comparatively difficult to study. We married two well-established methods: 4D flow MRI, a volumetric and dynamic blood-flow measurement technique, and chronically instrumented sheep to broadly assess fetal hepatic circulation. We performed this technique in mid- and late-gestation fetal Merino sheep under normoxemic conditions and major hepatic vasculature was segmented to quantify blood flow and related parameters. Dynamic blood flow was visualized, exhibiting an acceleration of umbilical vein blood through the ductus venosus as well as spiralling into the inferior vena cava where its stream remained separate from that of the hepatic veins and lower body. Ductus venosus changes from mid- to late-gestation included larger diameter (mid: 5.8 ± 0.9 vs. late: 7.1 ± 1.1 mm; P = 0.003) and cross-sectional area (mid: 27.1 ± 8.6 vs. late: 40.4 ± 11.8 mm2 ; P = 0.003), and lower velocity averaged over the cardiac cycle (mid: 15.7 ± 5.4 vs. late: 9.8 ± 7.0 cm s-1 ; P = 0.020). This resulted in higher magnitude blood flow (indexed to umbilical vein input) at mid-gestation in the ductus venosus (mid: 0.73 ± 0.21; late: 0.46 ± 0.21; P = 0.008). The visualization and quantification results support the further use of this technique to better understand regional blood flow changes during normal or abnormal fetal growth, as well as to observe acute haemodynamic responses to physiological challenges or drug interventions.


Asunto(s)
Feto , Hemodinámica , Animales , Velocidad del Flujo Sanguíneo , Feto/diagnóstico por imagen , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética , Embarazo , Estudios Retrospectivos , Ovinos
9.
Magn Reson Med ; 83(2): 535-548, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31464030

RESUMEN

PURPOSE: To test and implement a motion-robust and respiratory-resolved 3D Radial Flow framework that addresses the need for rapid, high resolution imaging in neonatal patients with congenital heart disease. METHODS: A 4-point velocity encoding and 3D radial trajectory with double-golden angle ordering was combined with bulk motion correction (from projection center of mass) and respiration phase detection (from principal component analysis of heartbeat-averaged data) to create motion-robust 3D velocity cardiac time-averaged data. This framework was tested in a whole-chest digital phantom with simulated bulk and realistic physiological motion. In vivo imaging was performed in 20 congenital heart disease infants under feed-and-sleep with submillimeter isotropic resolution in ~3 min. Flows were validated against clinical 2D PCMRI and whole-heart visualizations of blood flow were performed. RESULTS: The proposed framework resolved all simulated digital phantom motion states (mean ± standard error: rotation - azimuthal = 0.29 ± 0.02°; translation - Ty = 1.29 ± 0.12 mm, Tz = -0.27 ± 0.13 mm; rotation+translation - polar = 0.49 ± 0.16°, Tx = -2.47 ± 0.51 mm, Tz = 5.78 ± 1.33 mm). Measured timing errors of peak expiration across all signal-to-noise ratio values were 22% of the true respiratory period (range = [404-489 ± 298-334] ms). For in vivo imaging, motion correction improved 3D Radial Flow measurements (no correction: R2 = 0.62, root mean square error = 0.80 L/min/m2 , Bland-Altman bias [limits of agreement] = -0.21 [-1.40, 0.94] L/min/m2 ; motion corrected, expiration: R2 = 0.90, root mean square error = 0.46 L/min/m2 , bias [limits of agreement] = 0.06 [-0.49, 0.62] L/min/m2 ). Respiratory-resolved 3D velocity visualizations were achieved in various neonatal pathologies pre- and postsurgical correction. CONCLUSION: 3D cardiac flow may be visualized and accurately quantified in neonatal subjects using the proposed framework. This technique may enable more comprehensive hemodynamic studies in small infants.


Asunto(s)
Cardiopatías Congénitas/diagnóstico por imagen , Imagenología Tridimensional , Imagen por Resonancia Magnética , Movimiento (Física) , Neonatología , Algoritmos , Artefactos , Velocidad del Flujo Sanguíneo , Técnicas de Imagen Sincronizada Cardíacas , Femenino , Hemodinámica , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Lactante , Recién Nacido , Masculino , Modelos Teóricos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Respiración
10.
Fetal Diagn Ther ; 47(5): 354-362, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32062652

RESUMEN

Human fetal circulatory physiology has been investigated extensively using grey-scale ultrasound, which provides excellent visualization of cardiac anatomy and function, while velocity profiles in the heart and vessels can be interrogated using Doppler. Measures of cerebral and placental vascular resistance, as well as indirect measures of intracardiac pressure obtained from the velocity waveform in the ductus venosus are routinely used to guide the management of fetal cardiovascular and placental disease. However, the characterization of some key elements of cardiovascular physiology such as vessel blood flow and the oxygen content of blood in the arteries and veins, as well as fetal oxygen delivery and consumption are not readily measured using ultrasound. To study these parameters, we have historically relied on data obtained using invasive measurements made in animal models, which are not equivalent to the human in every respect. Over recent years, a number of technical advances have been made that have allowed us to examine the human fetal circulatory system using cardiovascular magnetic resonance (CMR). The combination of vessel blood flow measurements made using cine phase contrast magnetic resonance imaging and vessel blood oxygen saturation and hematocrit measurements made using T1 and T2 mapping have enabled us to emulate those classic fetal sheep experiments defining the distribution of blood flow and oxygen transport across the fetal circulation in the human fetus. In addition, we have applied these techniques to study the relationship between abnormal fetal cardiovascular physiology and fetal development in the setting of congenital heart disease and placental insufficiency. CMR has become an important diagnostic tool in the assessment of cardiovascular physiology in the setting of postnatal cardiovascular disease, and is now being applied to the fetus to enhance our understanding of normal and abnormal fetal circulatory physiology and its impact on fetal well-being.


Asunto(s)
Feto/diagnóstico por imagen , Cardiopatías Congénitas/diagnóstico por imagen , Hemodinámica/fisiología , Imagen por Resonancia Magnética/métodos , Femenino , Feto/irrigación sanguínea , Feto/fisiopatología , Cardiopatías Congénitas/fisiopatología , Humanos , Oximetría/métodos , Embarazo
12.
J Cardiovasc Magn Reson ; 21(1): 8, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30661506

RESUMEN

BACKGROUND: To date it has not been possible to obtain a comprehensive 3D assessment of fetal hemodynamics because of the technical challenges inherent in imaging small cardiac structures, movement of the fetus during data acquisition, and the difficulty of fusing data from multiple cardiac cycles when a cardiac gating signal is absent. Here we propose the combination of volumetric velocity-sensitive cardiovascular magnetic resonance imaging ("4D flow" CMR) and a specialized animal preparation (catheters to monitor fetal heart rate, anesthesia to immobilize mother and fetus) to examine fetal sheep cardiac hemodynamics in utero. METHODS: Ten pregnant Merino sheep underwent surgery to implant arterial catheters in the target fetuses. Anesthetized ewes underwent 4D flow CMR with acquisition at 3 T for fetal whole-heart coverage with 1.2-1.5 mm spatial resolution and 45-62 ms temporal resolution. Flow was measured in the heart and major vessels, and particle traces were used to visualize circulatory patterns in fetal cardiovascular shunts. Conservation of mass was used to test internal 4D flow consistency, and comparison to standard 2D phase contrast (PC) CMR was performed for validation. RESULTS: Streaming of blood from the ductus venosus through the foramen ovale was visualized. Flow waveforms in the major thoracic vessels and shunts displayed normal arterial and venous patterns. Combined ventricular output (CVO) was 546 mL/min per kg, and the distribution of flows (%CVO) were comparable to values obtained using other methods. Internal 4D flow consistency across 23 measurement locations was established with differences of 14.2 ± 12.1%. Compared with 2D PC CMR, 4D flow showed a strong correlation (R2 = 0.85) but underestimated flow (bias = - 21.88 mL/min per kg, p < 0.05). CONCLUSIONS: The combination of fetal surgical preparation and 4D flow CMR enables characterization and quantification of complex flow patterns in utero. Visualized streaming of blood through normal physiological shunts confirms the complex mechanism of substrate delivery to the fetal heart and brain. Besides offering insight into normal physiology, this technology has the potential to qualitatively characterize complex flow patterns in congenital heart disease phenotypes in a large animal model, which can support the development of new interventions to improve outcomes in this population.


Asunto(s)
Vasos Sanguíneos/diagnóstico por imagen , Vasos Sanguíneos/fisiología , Circulación Coronaria , Corazón Fetal/diagnóstico por imagen , Hemodinámica , Imagen por Resonancia Magnética , Imagen de Perfusión Miocárdica/métodos , Diagnóstico Prenatal/métodos , Animales , Velocidad del Flujo Sanguíneo , Vasos Sanguíneos/embriología , Femenino , Corazón Fetal/fisiología , Edad Gestacional , Frecuencia Cardíaca Fetal , Valor Predictivo de las Pruebas , Embarazo , Oveja Doméstica
13.
J Magn Reson Imaging ; 47(3): 787-797, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28722247

RESUMEN

PURPOSE: To provide regional strain and ventricular volume from a single acquisition, using subtly tagged steady-state free precession (SubTag SSFP) feature tracking. MATERIALS AND METHODS: The effects on regional strain of tag strength in gradient recalled echo (GRE) tagging, flip angle in untagged balanced SSFP, and both in SubTag SSFP were examined in the mid left ventricle of 15 healthy volunteers at 3T. Optimal parameters were determined from varying both tag strength and SSFP flip angle using full tag saturation GRE as the reference standard. SubTag SSFP was acquired in 15 additional healthy volunteers for whole-heart volume and strain assessment using the optimized parameters. Values measured by two image analysts were compared to clinical reference standards from untagged SSFP (volumes) and GRE tagging (strains). RESULTS: Regional strain accuracy was maintained with decreasing total tagging flip angle (ß); less than 3% differences for ß ≥ 26°. For untagged SSFP flip angle (α), whole-wall strain differences became statistically significant when α < 40°. A SubTag SSFP acquisition with α = 40° and ß = 46° showed the best combination of tagging strength, blood-myocardial contrast, and tag persistence at end-systole for regional strain estimation. SubTag SSFP also showed excellent agreement with untagged SSFP for volumetrics (percent difference: end-diastolic volume = 0.6%, end-systolic volume = 0.4%, stroke volume = 1.2%, ejection fraction = 0.6%, mass = 1.1%). CONCLUSION: Feature tracking for regional myocardial strain assessment is dependent on image features, mainly the tag strength, persistence, and image contrast. SubTag SSFP balances these criteria to provide accurate regional strain and volumetric assessment in a single acquisition. LEVEL OF EVIDENCE: 1 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2018;47:787-797.


Asunto(s)
Ventrículos Cardíacos/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Función Ventricular Izquierda/fisiología , Adulto , Femenino , Humanos , Masculino , Valores de Referencia , Reproducibilidad de los Resultados , Volumen Sistólico/fisiología
14.
J Cardiovasc Magn Reson ; 20(1): 77, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30486832

RESUMEN

PURPOSE: To image multidimensional flow in fetuses using golden-angle radial phase contrast cardiovascular magnetic resonance (PC-CMR) with motion correction and retrospective gating. METHODS: A novel PC-CMR method was developed using an ungated golden-angle radial acquisition with continuously incremented velocity encoding. Healthy subjects (n = 5, 27 ± 3 years, males) and pregnant females (n = 5, 34 ± 2 weeks gestation) were imaged at 3 T using the proposed sequence. Real-time reconstructions were first performed for retrospective motion correction and cardiac gating (using metric optimized gating, MOG). CINE reconstructions of multidimensional flow were then performed using the corrected and gated data. RESULTS: In adults, flows obtained using the proposed method agreed strongly with those obtained using a conventionally gated Cartesian acquisition. Across the five adults, bias and limits of agreement were - 1.0 cm/s and [- 5.1, 3.2] cm/s for mean velocities and - 1.1 cm/s and [- 6.5, 4.3] cm/s for peak velocities. Temporal correlation between corresponding waveforms was also high (R~ 0.98). Calculated timing errors between MOG and pulse-gating RR intervals were low (~ 20 ms). First insights into multidimensional fetal blood flows were achieved. Inter-subject consistency in fetal descending aortic flows (n = 3) was strong with an average velocity of 27.1 ± 0.4 cm/s, peak systolic velocity of 70.0 ± 1.8 cm/s and an intra-class correlation coefficient of 0.95 between the velocity waveforms. In one fetal case, high flow waveform reproducibility was demonstrated in the ascending aorta (R = 0.97) and main pulmonary artery (R = 0.99). CONCLUSION: Multidimensional PC-CMR of fetal flow was developed and validated, incorporating retrospective motion compensation and cardiac gating. Using this method, the first quantification and visualization of multidimensional fetal blood flow was achieved using CMR.


Asunto(s)
Circulación Coronaria , Corazón Fetal/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión Miocárdica/métodos , Diagnóstico Prenatal/métodos , Adulto , Aorta/diagnóstico por imagen , Aorta/fisiopatología , Velocidad del Flujo Sanguíneo , Técnicas de Imagen Sincronizada Cardíacas , Estudios de Casos y Controles , Estudios de Factibilidad , Femenino , Corazón Fetal/fisiopatología , Edad Gestacional , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Embarazo , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/fisiopatología , Reproducibilidad de los Resultados
15.
J Magn Reson Imaging ; 43(4): 833-42, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26417641

RESUMEN

PURPOSE: To introduce and demonstrate a method for unwrapping 4D flow data by utilizing continuity constraints in all four available dimensions. MATERIALS AND METHODS: A Laplacian-based algorithm for unwrapping phase data was expanded to unwrap along the temporal dimension in addition to all three spatial dimensions. The method was tested on simulated blood flow under varying vessel diameters and velocity encoding (Venc ) values. The algorithm was also tested in the aorta of five volunteers, with wrapped data acquired with Venc = 80 cm/s and 40 cm/s. Unwrapping performance was measured visually and in comparison to a high Venc reference free of phase wrapping. Ten patients with aortic coarctations with clinical Venc values and lower-Venc reconstructions were corrected and scored by blinded reviewers on a 0-3 scale. RESULTS: Simulated data were completely unwrapped for most clinically relevant levels of velocity aliasing using the proposed method. In vivo data in the aorta were completely unwrapped for cases of moderate wrapping (Venc = 80 cm/s, peak velocities = ∼160 cm/s), while residual aliasing remained for the more considerably aliased datasets (Venc = 40 cm/s). Improvements were seen in scoring (mean score improved by 1.1 and 2.2 for clinical and low-Venc datasets, respectively) by the blinded reviewers in the patient cohort for both standard and low-Venc reconstructions. CONCLUSION: A computationally fast, fully automated, easy to use, and parameter-free single-step method for unwrapping 4D flow data is shown to be effective for use in most common clinical occurrences of velocity aliasing.


Asunto(s)
Algoritmos , Coartación Aórtica/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Adulto , Aorta/diagnóstico por imagen , Aorta/patología , Automatización , Velocidad del Flujo Sanguíneo , Estudios de Cohortes , Simulación por Computador , Femenino , Análisis de Fourier , Voluntarios Sanos , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética , Masculino , Modelos Teóricos , Fantasmas de Imagen , Relación Señal-Ruido , Programas Informáticos , Adulto Joven
16.
J Magn Reson Imaging ; 42(1): 211-6, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25210850

RESUMEN

BACKGROUND: To demonstrate a novel velocity sensitive acquisition and retrospective cardiorespiratory double-gated reconstruction scheme to examine respiratory effect on venous blood flow in healthy volunteers. METHODS: Radial two dimensional (2D) phase contrast MR is performed at 3 Tesla in the internal jugular vein (IJV) of healthy volunteers (n = 6). Data are retrospectively partitioned based on respiratory waveforms using three schemes: moving average for respiration plateaus, gradient for active respiration, and ten respiratory phases that are cardiac time-averaged. A single 4D flow MR scan is performed in the neck of a healthy volunteer. After gradient operation, blood velocity measurements are made along the IJV length. Percent changes from expiration to inspiration for moving average and gradient techniques are statistically compared with paired t-tests. RESULTS: Percent change increase in summed IJV mean and peak blood flow during active inspiration versus active expiration in 2D was significant (mean flow: 11.5 ± 8.0%, peak flow: 11.9 ± 5.9%, P < 0.01). Smallest cross-sectional area and largest blood velocity are seen during inspiration phases (phase number: area-6.5 ± 3.6, velocity-6.2 ± 3.2). Significant increase in mean velocity along the length of the IJV was observed in 3D, with increasing percent changes more proximal to the chest (mean, 39 ± 30%; range, 0-93%, P = 0.001). CONCLUSION: With a radial acquisition, this pilot study demonstrates feasibility of simultaneous retrospective cardiorespiratory gating in IJV flow. Greatest differences in flow occur between active respiration phases, increasing in magnitude more proximal to the chest.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Técnicas de Imagen Sincronizada Cardíacas/métodos , Venas Yugulares/fisiología , Angiografía por Resonancia Magnética/métodos , Mecánica Respiratoria/fisiología , Técnicas de Imagen Sincronizada Respiratorias/métodos , Adulto , Estudios de Factibilidad , Femenino , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Proyectos Piloto , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad , Adulto Joven
17.
J Magn Reson Imaging ; 42(5): 1458-64, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25847621

RESUMEN

PURPOSE: To describe, validate, and implement a centerline processing scheme (CPS) for semiautomated segmentation and quantification in carotid siphons of healthy subjects. 4D flow MRI enables blood flow measurement in all major cerebral arteries with one scan. Clinical translational hurdles are time demanding postprocessing and user-dependence induced variability during analysis. MATERIALS AND METHODS: A CPS for 4D flow data was developed to automatically separate cerebral artery trees. Flow parameters were quantified at planes along the centerline oriented perpendicular to the vessel path. At 3T, validation against 2D phase-contrast (PC) magnetic resonance imaging (MRI) and 4D flow manual processing was performed on an intracranial flow phantom for constant flow, while pulsatile flow validation was performed in the internal carotid artery (ICA) of 10 healthy volunteers. The CPS and 4D manual processing times were measured and compared. Flow and area measurements were also demonstrated along the length of the ICA siphon. RESULTS: Phantom measurements for area and flow were highly correlated between the CPS and 2D measurements (area: R = 0.95, flow: R = 0.94), while in vivo waveforms were highly correlated (R = 0.93). Processing time was reduced by a factor of 4.6 compared with manual processing. Whole ICA measurements revealed a significantly decreased area in the most distal segment of the carotid siphon (P = 0.0017), with flow unchanged (P = 0.84). CONCLUSION: This study exhibits fast semiautomated analysis of intracranial 4D flow MRI. Internal consistency was shown through flow conservation along the tortuous ICA siphon, which is typically difficult to assess.


Asunto(s)
Arterias Carótidas/anomalías , Arterias Cerebrales/anomalías , Imagenología Tridimensional , Imagen por Resonancia Magnética , Adulto , Femenino , Humanos , Masculino , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
Quant Imaging Med Surg ; 14(5): 3447-3460, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38720850

RESUMEN

Background: Magnetic resonance elastography (MRE) is a non-invasive method to measure the viscoelastic properties of tissue and has been applied in multiple abdominal organs. However, abdominal MRE suffers from detrimental breathing motion causing misalignment of structures between repeated acquisitions for different MRE dimensions (e.g., motion encoding directions and wave phase offsets). This study investigated motion correction strategies to resolve all breathing motion on sagittal free-breathing MRE acquisitions in a phantom, in healthy volunteers and showed feasibility in patients. Methods: First, in silico experiments were performed on a static phantom dataset with simulated motion. Second, eight healthy volunteers underwent two sagittal MRE acquisitions in the pancreas and right kidney. The multi-frequency free-breathing spin-echo echo-planar-imaging (SE-EPI) MRE consisted of four frequencies (30, 40, 50, 60 Hz), eight wave-phase offsets, with 3 mm3 isotropic voxel size. Following data re-sorting in different number of motion states (4 till 12) based on respiratory waveform signal, three intensity-based registration methods (monomodal, multimodal, and phase correlation) and non-rigid local registration were compared. A ranking method was used to determine the best registration method, based on seven signal-to-noise and image quality measures. Repeatability was assessed for no motion correction (Original) and the best performing method (Best) using Bland-Altman analysis. Lastly, the best motion correction method was compared to no motion correction on patient MRE data [pancreatic ductal adenocarcinoma (PDAC, n=5) and metabolic dysfunction-associated steatotic liver disease (MASLD) (n=1)]. Results: In silico experiments showed a deviation of shear wave speed (SWS) with simulated motion to the ground truth, which was (partially) resolved using motion correction. In healthy volunteers ranking resulted in the best motion correction method of monomodal registration using nine motion states, while no motion correction was ranked last. Limits of agreement were (-0.18, 0.14), and (-0.25, 0.18) m/s for Best and Original, respectively. Using motion correction in patients resulted in a significant increase in SWS in the pancreas (Original: 1.39±0.10 and Best: 1.50±0.17 m/s). After motion correction PDAC had a mean SWS of 1.56±0.27 m/s (Original: 1.42±0.25 m/s). The fibrotic liver mean SWS was 2.07±0.20 m/s (Original: 2.12±0.18 m/s). Conclusions: Motion correction in sagittal free-breathing abdominal MRE results in improved data quality, inversion precision, repeatability, and is feasible in patients.

19.
Heart ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39317438

RESUMEN

BACKGROUND: Resveratrol, a dietary supplement that intervenes in cellular metabolism, has been shown to reduce aortic growth rate in a mouse model of Marfan syndrome (MFS), a condition associated in humans with life-threatening aortic complications, often preceded by aortic dilatation. The primary objective of this study was to investigate the effects of resveratrol on aortic growth rate in patients with MFS . METHODS: In this investigator-initiated, single-arm open-label multicentre trial, we analysed resveratrol treatment in adults aged 18-50 years with MFS. The primary endpoint was the change in estimated annual aortic growth at five predefined levels in the thoracic aorta after 1 year of resveratrol treatment, evaluated using a linear mixed model. Aortic diameters were measured by cardiac MRI at three time points to analyse the annual aortic expansion rate before and after initiation of treatment. Additionally, annual aortic growth was compared with growth in a previously conducted losartan randomised clinical trial. RESULTS: 898 patients were screened of which 19% (168/898) patients met the inclusion criteria.36% (61/168) patients signed informed consent and 93% (57/61) aged 37±9 years, of which 28 males (49%) were included in the final analysis of the study. 46% (26/57) had undergone aortic root replacement prior to the study. Aortic root diameters remained stable after 1.2±0.3 years of resveratrol administration. A trend towards a decrease in estimated growth rate (mm/year) was observed in the aortic root (from 0.39±0.06 to -0.13±0.23, p=0.072), ascending aorta (from 0.40±0.05 to -0.01±0.18, p=0.072) and distal descending aorta (from 0.32±0.04 to 0.01±0.14, p=0.072). CONCLUSION: Resveratrol treatment for 1 year may stabilise the aortic growth rate in adult patients with MFS. However, a subsequent randomised clinical trial with a longer follow-up duration and a larger study cohort is needed to establish an actual long-term beneficial effect of this dietary supplement in patients with MFS. TRIAL REGISTRATION NUMBER: NL66127.018.18.

20.
Br J Radiol ; 96(1147): 20211096, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35687661

RESUMEN

Fetal cardiac MRI is challenging due to fetal and maternal movements as well as the need for a reliable cardiac gating signal and high spatiotemporal resolution. Ongoing research and recent technical developments to address these challenges show the potential of MRI as an adjunct to ultrasound for the assessment of the fetal heart and great vessels. MRI measurements of blood flow have enabled the assessment of normal fetal circulation as well as conditions with disrupted circulations, such as congenital heart disease, along with associated organ underdevelopment and hemodynamic instability. This review provides details of the techniques used in fetal cardiovascular blood flow MRI, including single slice and volumetric imaging sequences, post-processing and analysis, along with a summary of applications in human studies and animal models.


Asunto(s)
Cardiopatías Congénitas , Imagen por Resonancia Magnética , Animales , Embarazo , Humanos , Femenino , Imagen por Resonancia Magnética/métodos , Hemodinámica , Corazón Fetal/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA