Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 73(2): 109-22, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19837458

RESUMEN

We assessed the sensitivity of freshwater organisms (invertebrates and algae) to the fungicide Shirlan (active ingredient fluazinam) in single-species laboratory tests and in microcosms. Species sensitivity distribution (SSD) curves were constructed by means of acute toxicity data for 14 invertebrate species, since algae were much less sensitive. The EC(10)-based SSD gave a median HC(5) value of 0.6microgL(-1) and a 90% confidence interval of 0.1-1.9 microgL(-1). The EC(50)-based SSD gave a median HC(5) value of 3.9 microgL(-1) (90% confidence interval: 0.9-9.9 microgL(-1)). The microcosms were treated four times with Shirlan (concentration range: 0.4-250 microgL(-1)). Responses of the microcosm communities were followed. The 2 microgL(-1) treatment was the no-observed-effect concentration (NOEC(microcosm)). The 10 microgL(-1) treatment resulted in short-term effects on a few zooplankton taxa. Clear effects were observed at 50 and 250 microgL(-1). The responses in the microcosms were in line with the toxicity data for the tested lab species. The median EC(10)-based HC(5) and the lower limit EC(50)-based HC(5) were lower, and the median EC(50)-based HC(5) was slightly higher than the NOEC(microcosm). This is consistent with other studies that compared SSDs with responses in model ecosystems that received repeated applications of pesticides.


Asunto(s)
Aminopiridinas/toxicidad , Ecosistema , Eucariontes/efectos de los fármacos , Fungicidas Industriales/toxicidad , Invertebrados/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Aminopiridinas/administración & dosificación , Animales , Biología del Agua Dulce , Fungicidas Industriales/administración & dosificación , Invertebrados/clasificación , Invertebrados/fisiología , Dosificación Letal Mediana , Medición de Riesgo , Especificidad de la Especie , Factores de Tiempo , Pruebas de Toxicidad Aguda , Contaminantes Químicos del Agua/administración & dosificación , Zooplancton/clasificación , Zooplancton/efectos de los fármacos
2.
Arch Environ Contam Toxicol ; 46(3): 324-35, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15195804

RESUMEN

The toxicity of the pyrethroid insecticide lambda-cyhalothrin to freshwater invertebrates has been investigated using data from short-term laboratory toxicity tests and in situ bioassays and population-level effects in field microcosms. In laboratory tests, patterns of toxicity were consistent with previous data on pyrethroids. The midge Chaoborus obscuripes was most sensitive (48- and 96-h EC50 = 2.8 ng/L). Other insect larvae (Hemiptera, Ephemeroptera) and macrocrustacea (Amphipoda, Isopoda) were also relatively sensitive, with 48- and 96-h EC50 values between 10 and 100 ng/L. Generally, microcrustacea (Cladocera, Copepoda) and larvae of certain insect groups (Odonata and Chironomidae) were less sensitive, with 48-h EC50 values higher than 100 ng/L. Mollusca and Plathelminthes were insensitive and were unaffected at concentrations at and above the water solubility (5 microg/L). Generally, the EC50 values based on initial population responses in field enclosures were similar to values derived from laboratory tests with the same taxa. Also, the corresponding fifth and tenth percentile hazard concentrations (HC5 and HC10) were similar (laboratory HC5 = 2.7 ng/L and field HC5 = 4.1 ng/L; laboratory and field HC10 = 5.1 ng/L), at least when based on the same sensitive taxonomic groups (insects and crustaceans) and when a similar concentration range was taken into account. In the three field enclosure experiments and at a treatment level of 10 ng/L, consistent effects were observed for only one population (Chaoborus obscuripes), with recovery taking place within 3 to 6 weeks. The laboratory HC5 (2.7 ng/L) and HC10 (5.1 ng/L) based on acute EC50 values of all aquatic arthropod taxa were both lower than this 10 ng/L, a concentration that might represent the "regulatory acceptable concentration." The HC5 and HC10 values in this study in The Netherlands (based on static laboratory tests with freshwater arthropods) were very similar to those derived from a previous study in the United Kingdom (1.4 and 3.3 ng/L). This suggests that for pesticides like lambda-cyhalothrin, HC5 values based on static laboratory tests may provide a conservative estimate of the potential for community-level effects under field conditions. While these HC5 values are conservative for initial effects, they do not provide information on recovery potential, which may be important for regulatory decision-making.


Asunto(s)
Exposición a Riesgos Ambientales , Insecticidas/toxicidad , Invertebrados , Piretrinas/toxicidad , Animales , Bioensayo , Ecosistema , Cadena Alimentaria , Nitrilos , Medición de Riesgo , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA