Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Transl Med ; 13: 160, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25990108

RESUMEN

BACKGROUND: The clinical development of advanced therapy medicinal products (ATMPs), a new class of drugs, requires initial safety studies that deviate from standard non-clinical safety protocols. The study provides a strategy to address the safety aspects of biodistribution and tumorigenicity of ATMPs under good laboratory practice (GLP) conditions avoiding cell product manipulation. Moreover, the strategy was applied on a human ATMP for cartilage repair. METHODS: The testing strategy addresses biodistribution and tumorigenicity using a multi-step analysis without any cell manipulation to exclude changes of test item characteristics. As a safeguard measurement for meeting regulatory expectations, the project design and goals were discussed continuously with the regulatory authority using a staggered scientific advice concept. Subsequently, the strategy was applied to co.don chondrosphere® (huChon spheroid), a tissue-engineered matrix-free ATMP of human normal chondrocytes. In both the biodistribution and tumorigenicity studies, huChon spheroids were implanted subcutaneously into 40 immunodeficient mice. Biodistribution was studied 1 month after implantation. A skin disc containing the huChon spheroid, two surrounding skin rings and selected organs were analyzed by validated, gender-specific, highly-sensitive triplex qPCR and by immunohistochemistry (IHC). RESULTS: No human DNA was detected in distant skin rings and analyzed organs. IHC revealed no direct or indirect indications of cell migration. Tumorigenicity was assessed 6 months after huChon spheroid implantation by palpation, macroscopic inspection, histology and IHC. No mice from the huChon spheroid group developed a tumor at the implantation site. In two mice, benign tumors were detected that were negative for HLA-ABC, suggesting that they were of spontaneous murine origin. CONCLUSIONS: In summary, the presented strategy using a multi-step analysis was confirmed to be suitable for safety studies of ATMPs.


Asunto(s)
Cartílago/patología , Laboratorios , Ingeniería de Tejidos/normas , Animales , Células CACO-2 , Condrocitos/citología , Femenino , Terapia Genética/normas , Humanos , Cariotipificación , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células 3T3 NIH , Trasplante de Neoplasias , Seguridad del Paciente , Estudios Prospectivos , Control de Calidad
2.
Artículo en Alemán | MEDLINE | ID: mdl-26431722

RESUMEN

For the development of medicinal products animal models are still indispensable to demonstrate efficacy and safety prior to first use in humans. Advanced therapy medicinal products (ATMP), which include cell-based medicinal products (CBMP), differ in their pharmacology and toxicology compared to conventional pharmaceuticals, and thus, require an adapted regime for non-clinical development. Developers are, therefore, challenged to develop particular individual concepts and to reconcile these with regulatory agencies. Guidelines issued by the European Medicines Agency (EMA), the U.S. Food and Drug Administration (FDA) and other sources can provide direction.The published approaches for non-clinical testing of efficacy document that homologous animal models where the therapeutic effect is investigated in a disease-relevant animal model utilizing cells derived from the same species are commonly used. The challenge is that the selected model should reflect the human disease in all critical features and that the cells should be comparable to the investigated human medicinal product in terms of quality and biological activity. This is not achievable in all cases. In these cases, alternative methods may provide supplemental information. To demonstrate the scientific proof-of-concept (PoC), small animal models such as mice or rats are preferred. During the subsequent product development phase, large animal models (i.e. sheep, minipigs, dogs) must be considered, as they may better reflect the anatomical or physiological situation in humans. In addition to efficacy, those models may also be suitable to prove some safety aspects of ATMP (e.g. regarding dose finding, local tolerance, or undesired interactions and effects of the administered cells in the target tissue). In contrast, for evaluation of the two prominent endpoints for characterizing the safety of ATMP (i.e. biodistribution, tumorigenicity) heterologous small animal models, especially immunodeficient mouse strains, are favourable due to their tolerance to the human cell therapy product. The execution of non-clinical studies under the principles of good laboratory practice (GLP) increases the acceptance of the results by authorities and the scientific community.


Asunto(s)
Productos Biológicos/efectos adversos , Productos Biológicos/farmacología , Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Modelos Animales , Academias e Institutos , Alternativas al Uso de Animales/legislación & jurisprudencia , Alternativas al Uso de Animales/métodos , Animales , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Alemania , Humanos
3.
PLoS One ; 15(7): e0234986, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32634135

RESUMEN

Glioblastoma is a common, malignant brain tumor whose disease incidence increases with age. Glioblastoma stem-like cells (GSCs) are thought to contribute to cancer therapy resistance and to be responsible for tumor initiation, maintenance, and recurrence. This study utilizes both SNP array and gene expression profiling to better understand GSCs and their relation to malignant disease. Peripheral blood and primary glioblastoma tumor tissue were obtained from patients, the latter of which was used to generate GSCs as well as a CD133pos./CD15pos. subpopulation. The stem cell features of GSCs were confirmed via the immunofluorescent expression of Nestin, SOX2, and CD133. Both tumor tissue and the isolated primary cells shared unique abnormal genomic characteristics, including a gain of chromosome 7 as well as either a partial or complete loss of chromosome 10. Individual genomic differences were also observed, including the loss of chromosome 4 and segmental uniparental disomy of 9p24.3→p21.3 in GSCs. Gene expression profiling revealed 418 genes upregulated in tumor tissue vs. CD133pos./CD15pos. cells and 44 genes upregulated in CD133pos./CD15pos. cells vs. tumor tissue. Pathway analyses demonstrated that upregulated genes in CD133pos./CD15pos. cells are relevant to cell cycle processes and cancerogenesis. In summary, we detected previously undescribed genomic and gene expression differences when comparing tumor tissue and isolated stem-like subpopulations.


Asunto(s)
Glioblastoma/patología , Células Madre Neoplásicas/patología , Antígeno AC133/análisis , Separación Celular/métodos , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Antígeno Lewis X/análisis , Polimorfismo de Nucleótido Simple/genética , Manejo de Especímenes , Regulación hacia Arriba
4.
Biotechnol Bioeng ; 101(4): 714-28, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18814291

RESUMEN

Osteoarthritis is a severe socio-economical disease, for which a suitable treatment modality does not exist. Tissue engineering of cartilage transplants is the most promising method to treat focal cartilage defects. However, current culturing procedures do not yet meet the requirements for clinical implementation. This article presents a novel bioreactor device for the functional tissue engineering of articular cartilage which enables cyclic mechanical loading combined with medium perfusion over long periods of time, under controlled cultivation and stimulation conditions whilst ensuring system sterility. The closed bioreactor consists of a small, perfused, autoclavable, twin chamber culture device with a contactless actuator for mechanical loading. Uni-axial loading is guided by externally applied magnetic fields with real-time feedback-control from a platform load cell and an inductive proximity sensor. This precise measurement allows the development of the mechanical properties of the cultured tissue to be monitored in real-time. This is an essential step towards clinical implementation, as it allows accounting for differences in the culture procedure induced by patient-variability. This article describes, based on standard agarose hydrogels of 3 mm height and 10 mm diameter, the technical concept, implementation, scalability, reproducibility, precision, and the calibration procedures of the whole bioreactor instrument. Particular attention is given to the contactless loading system by which chondrocyte scaffolds can be compressed at defined loading frequencies and magnitudes, whilst maintaining an aseptic cultivation procedure. In a "proof of principle" experiment, chondrocyte seeded agarose gels were cultured for 21 days in the bioreactor system. Intermittent medium perfusion at a steady flow rate (0.5 mL/min) was applied. Sterility and cell viability (ds-DNA quantification and fluorometric live/dead staining) were preserved in the system. Flow induced shear stress stimulated sGAG (sulfated glycosaminoglycan) content (DMMB assay) after 21 days, which was confirmed by histological staining of Alcian blue and by immunostaining of Aggrecan. Experimental data on mechanotransduction and long-term studies on the beneficial effects of combined perfusion and different mechanical loading patterns on chondrocyte seeded scaffolds will be published separately.


Asunto(s)
Reactores Biológicos , Cartílago/crecimiento & desarrollo , Condrocitos/metabolismo , Ingeniería de Tejidos/métodos , Cartílago Articular/crecimiento & desarrollo , Diseño de Equipo , Mecanotransducción Celular
5.
Stem Cells Dev ; 27(8): 545-555, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29482445

RESUMEN

Due to the limited self-healing capacity of articular cartilage, innovative, regenerative approaches are of particular interest. The use of two-stage procedures utilizing in vitro-expanded mesenchymal stromal cells (MSCs) from various cell sources requires good manufacturing practice-compliant production, a process with high demands on time, staffing, and financial resources. In contrast, one- stage procedures are directly available, but need a safe enrichment of potent MSCs. CD271 is a surface marker known to marking the majority of native MSCs in bone marrow (BM). In this study, the feasibility of generating a single-stage cartilage graft of enriched CD271+ BM-derived mononuclear cells (MNCs) without in vitro monolayer expansion from eight healthy donors was investigated. Cartilage grafts were generated by magnetic-activated cell sorting and separated cells were directly transferred into collagen type I hydrogels, followed by 3D proliferation and differentiation period of CD271+, CD271-, or unseparated MNCs. CD271+ MNCs showed the highest proliferation rate, cell viability, sulfated glycosaminoglycan deposition, and cartilage marker expression compared to the CD271- or unseparated MNC fractions in 3D culture. Analysis according to the minimal criteria of the International Society for Cellular Therapy highlighted a 66.8-fold enrichment of fibroblast colony-forming units in CD271+ MNCs and the only fulfillment of the MSC marker profile compared to unseparated MNCs. In summary, CD271+ MNCs are capable of generating adequate articular cartilage grafts presenting high cell viability and notable chondrogenic matrix deposition in a CE-marked collagen type I hydrogel, which can obviate the need for an initial monolayer expansion.


Asunto(s)
Células de la Médula Ósea/citología , Cartílago Articular/citología , Técnicas de Cultivo de Célula , Separación Celular/métodos , Células Madre Mesenquimatosas/citología , Biomarcadores/metabolismo , Células de la Médula Ósea/metabolismo , Cartílago Articular/metabolismo , Diferenciación Celular , Núcleo Celular/ultraestructura , Proliferación Celular , Supervivencia Celular , Condrogénesis/genética , Expresión Génica , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Humanos , Hidrogeles/química , Células Madre Mesenquimatosas/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Cultivo Primario de Células , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo
6.
J Tissue Eng Regen Med ; 12(7): 1717-1727, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29766671

RESUMEN

Due to the poor self-healing capacities of cartilage, innovative approaches are a major clinical need. The use of in vitro expanded mesenchymal stromal cells (MSCs) in a 2-stage approach is accompanied by cost-, time-, and personnel-intensive good manufacturing practice production. A 1-stage intraoperative procedure could overcome these drawbacks. The aim was to prove the feasibility of a point-of-care concept for the treatment of cartilage lesions using defined MSC subpopulations in a collagen hydrogel without prior MSC monolayer expansion. We tested 4 single marker candidates (MSCA-1, W4A5, CD146, CD271) for their effectiveness of separating colony-forming units of ovine MSCs via magnetic cell separation. The most promising surface marker with regard to the highest enrichment of colony-forming cells was subsequently used to isolate a MSC subpopulation for the direct generation of a cartilage graft composed of a collagen type I hydrogel without the propagation of MSCs in monolayer. We observed that separation with CD271 sustained the highest enrichment of colony-forming units. We then demonstrated the feasibility of generating a cartilage graft with an unsorted bone marrow mononuclear cell fraction and with a characterized CD271 positive MSC subpopulation without the need for a prior cell expansion. A reduced volume of 6.25% of the CD271 positive MSCs was needed to achieve the same results regarding chondrogenesis compared with the unseparated bone marrow mononuclear cell fraction, drastically reducing the number of nonrelevant cells. This study provides a proof-of-concept and reflects the potential of an intraoperative procedure for direct seeding of cartilage grafts with selected CD271 positive cells from bone marrow.


Asunto(s)
Cartílago , Condrogénesis , Células Madre Mesenquimatosas/metabolismo , Sistemas de Atención de Punto , Ingeniería de Tejidos , Trasplante de Tejidos , Animales , Cartílago/lesiones , Cartílago/metabolismo , Cartílago/patología , Cartílago/trasplante , Células Madre Mesenquimatosas/patología , Prueba de Estudio Conceptual , Ovinos
7.
Artículo en Inglés | MEDLINE | ID: mdl-28706772

RESUMEN

Background/purpose: The use of dorsal skinfold chamber models has substantially improved the understanding of micro-vascularisation in pathophysiology over the last eight decades. It allows in vivo pathophysiological studies of vascularisation over a continuous period of time. The dorsal skinfold chamber is an attractive technique for monitoring the vascularisation of autologous or allogenic transplants, wound healing, tumorigenesis and compatibility of biomaterial implants. To further reduce the animals' discomfort while carrying the dorsal skinfold chamber, we developed a smaller chamber (the Leipzig Dorsal Skinfold Chamber) and summarized the commercial available chamber models. In addition we compared our model to the common chamber. Methods: The Leipzig Dorsal Skinfold Chamber was applied to 66 C57Bl/6 female mice with a mean weight of 22 g. Angiogenesis within the dorsal skinfold chamber was evaluated after injection of fluorescein isothiocyanate dextran with an Axio Scope microscope. The mean vessel density within the dorsal skinfold chamber was assessed over a period of 21 days at five different time points. The gained data were compared to previous results using a bigger and heavier dorsal skinfold model in mice. A PubMed and a patent search were performed and all papers related to "dorsal skinfold chamber" from 1st of January 2006 to 31st of December 2015 were evaluated regarding the dorsal skinfold chamber models and their technical improvements. The main models are described and compared to our titanium Leipzig Dorsal Skinfold Chamber model. Results: The Leipzig Dorsal Skinfold Chamber fulfils all requirements of continuous in vivo models known from previous chamber models while reducing irritation to the mice. Five different chamber models have been identified showing substantial regional diversity. The newly elaborated titanium dorsal skinfold chamber may replace the pre-existing titanium chamber model used in Germany so far, as it is smaller and lighter than the former ones. However, the new chamber does not reach the advantages of already existing chamber models used in Asia and the US, which are smaller and lighter. Conclusion: Elaborating a smaller and lighter dorsal skinfold chamber allows research studies on smaller animals and reduces the animals' discomfort while carrying the chamber. Greater research exchange should be done to spread the use of smaller and lighter chamber models.

8.
J Tissue Eng Regen Med ; 8(7): 566-77, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22761174

RESUMEN

Many synthetic polymers and biomaterials have been used as matrices for 3D chondrocyte seeding and transplantation in the field of cartilage tissue engineering. To develop a fully autologous carrier for chondrocyte cultivation, we examined the feasibility of allogeneic plasma and whole blood-based matrices and compared them to agarose constructs. Primary articular chondrocytes isolated from 12-month-old pigs were embedded into agarose, plasma and whole blood matrices and cultivated under static-free swelling conditions for up to four weeks. To evaluate the quality of the synthesized extracellular matrix (ECM), constructs were subjected to weekly examinations using histological staining, spectrophotometry, immunohistochemistry and biochemical analysis. In addition, gene expression of cartilage-specific markers such as aggrecan, Sox9 and collagen types I, II and X was determined by RT-PCR. Chondrocyte morphology was assessed via scanning electron microscopy and viability staining, including proliferation and apoptosis assays. Finally, (13) C NMR spectroscopy provided further evidence of synthesis of ECM components. It was shown that chondrocyte cultivation in allogeneic plasma and whole-blood matrices promoted sufficient chondrocyte viability and differentiation behaviour, resulting in neo-formation of a hyaline-like cartilage matrix.


Asunto(s)
Cartílago/fisiología , Condrocitos/citología , Matriz Extracelular/metabolismo , Plasma/metabolismo , Ingeniería de Tejidos/métodos , Animales , Apoptosis/genética , Espectroscopía de Resonancia Magnética con Carbono-13 , Diferenciación Celular/genética , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glicosaminoglicanos/metabolismo , Sus scrofa , Andamios del Tejido/química
9.
Arthritis Res Ther ; 12(3): R82, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20462435

RESUMEN

INTRODUCTION: The present study examined the effect of collagen fragments on anabolic and catabolic activities by chondrocyte/agarose constructs subjected to dynamic compression. METHODS: Constructs were cultured under free-swelling conditions or subjected to continuous and intermittent compression regimes, in the presence of the N-terminal (NT) and C-terminal (CT) telopeptides derived from collagen type II and/or 1400 W (inhibits inducible nitric oxide synthase (iNOS)). The anabolic and catabolic activities were compared to the amino-terminal fibronectin fragment (NH2-FN-f) and assessed as follows: nitric oxide (NO) release and sulphated glycosaminoglycan (sGAG) content were quantified using biochemical assays. Tumour necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta) release were measured by ELISA. Gene expression of matrix metalloproteinase-3 (MMP-3), matrix metalloproteinase-13 (MMP-13), collagen type II and fibronectin were assessed by real-time quantitative polymerase chain reaction (qPCR). Two-way ANOVA and the post hoc Bonferroni-corrected t-test was used to examine data. RESULTS: The presence of the NT or CT peptides caused a moderate to strong dose-dependent stimulation of NO, TNFalpha and IL-1beta production and inhibition of sGAG content. In some instances, high concentrations of telopeptides were just as potent in stimulating catabolic activities when compared to NH2-FN-f. Depending on the concentration and type of fragment, the increased levels of NO and cytokines were inhibited with 1400 W, resulting in the restoration of sGAG content. Depending on the duration and type of compression regime employed, stimulation with compression or incubation with 1400 W or a combination of both, inhibited telopeptide or NH2-FN-f induced NO release and cytokine production and enhanced sGAG content. All fragments induced MMP-3 and MMP-13 expression in a time-dependent manner. This effect was reversed with compression and/or 1400 W resulting in the restoration of sGAG content and induction of collagen type II and fibronectin expression. CONCLUSIONS: Collagen fragments containing the N- and C-terminal telopeptides have dose-dependent catabolic activities similar to fibronectin fragments and increase the production of NO, cytokines and MMPs. Catabolic activities were downregulated by dynamic compression or by the presence of the iNOS inhibitor, linking reparative activities by both types of stimuli. Future investigations which examine the signalling cascades of chondrocytes in response to matrix fragments with mechanical influences may provide useful information for early osteoarthritis treatments.


Asunto(s)
Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Colágeno Tipo I/farmacología , Fragmentos de Péptidos/farmacología , Péptidos/farmacología , Sefarosa , Animales , Fenómenos Biomecánicos , Células Cultivadas , Condrocitos/citología , Colágeno Tipo II/metabolismo , Relación Dosis-Respuesta a Droga , Fibronectinas/metabolismo , Glicosaminoglicanos/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Metabolismo/efectos de los fármacos , Óxido Nítrico/metabolismo , Porcinos , Factor de Necrosis Tumoral alfa/metabolismo
10.
J Biomech ; 42(13): 2177-82, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19656515

RESUMEN

Recent studies have shown that integrins act as mechanoreceptors in articular cartilage. In this study, we examined the effect of blocking RGD-dependent integrins on both ECM gene expression and ECM protein synthesis. Chondrocytes were isolated from full-depth porcine articular cartilage and seeded in 3% agarose constructs. These constructs were loaded in compression with 15% strain at 0.33 and 1 Hz for 12h, in the presence or absence of GRGDSP, which blocks RGD-dependent integrin receptors. The levels of mRNA for aggrecan, collagen II and MMP-3 were determined by semi-quantitative PCR at several time points up to 24h post-stimulation. DNA and sGAG content were determined at several time points up to 28 days post-stimulation. At 0.33 Hz, the mRNA levels for aggrecan and MMP-3 were increased after loading, but the mRNA levels for collagen II remained unchanged. Incubation with GRGDSP counteracted these effects. Loading at 1 Hz led to increased mRNA levels for all three molecules directly after loading and these effects were counteracted by incubation with GRGDSP. The constructs that were loaded at 0.33 Hz showed a lower amount of sGAG, compared to the unstrained control. In contrast, loading at 1 Hz caused an increase in sGAG deposition over the culture period. Blocking integrins had only a counteracting effect on the long-term biosynthetic response of constructs that were compressed at 1 Hz. The results confirmed the role of RGD-dependent integrins as mechanotransducers in the regulation of both ECM gene expression and matrix biosynthesis for chondrocytes seeded in agarose under the applied loading regime. Interestingly, this role seems to be dependent on the applied loading frequency.


Asunto(s)
Cartílago Articular/fisiología , Condrocitos/fisiología , Proteínas de la Matriz Extracelular/fisiología , Integrinas/metabolismo , Mecanotransducción Celular/fisiología , Oligopéptidos/metabolismo , Ingeniería de Tejidos/métodos , Animales , Bovinos , Células Cultivadas , Fuerza Compresiva/fisiología , Regulación de la Expresión Génica/fisiología , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA