Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 211(11): 1725-1735, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37843500

RESUMEN

Complement activation via the classical pathway is initiated when oligomeric Igs on target surfaces are recognized by C1 of the complement cascade. The strength of this interaction and activation of the complement system are influenced by structural variation of the Ab, including Ab isotype, subclass, and glycosylation profile. Polymorphic variants of IgG have also been described to influence Fc-dependent effector functions. Therefore, we assessed complement binding, deposition, and complement-dependent cytotoxicity (CDC) of 27 known IgG allotypes with anti-trinitrophenyl specificity. Differences between allotypes within subclasses were minor for IgG1, IgG3, and IgG4 allotypes, and more substantial for IgG2. Allelic variant IGHG2*06, containing a unique serine at position 378 in the CH3 domain, showed less efficient complement activation and CDC compared with other IgG2 polymorphisms. We also observed variable cell lysis between IgG1 and IgG3, with IgG3 being superior in lysis of human RBCs and Ramos cells, and IgG1 being superior in lysis of Raji and Wien133 cells, demonstrating that a long-standing conundrum in the literature depends on cellular context. Furthermore, we compared IgG1 and IgG3 under different circumstances, showing that Ag density and Ab hinge length, but not complement regulators, define the context dependency of Ab-mediated CDC activity. Our results point toward a variation in the capacity of IgG subclasses to activate complement due to single amino acid changes and hinge length differences of allotypes to activate complement, which might give new insights on susceptibility to infectious, alloimmune, or autoimmune diseases and aid the design of Ab-based therapeutics.


Asunto(s)
Activación de Complemento , Inmunoglobulina G , Humanos , Glicosilación
2.
Mol Cell ; 63(1): 135-45, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27320199

RESUMEN

The classical complement pathway contributes to the natural immune defense against pathogens and tumors. IgG antibodies can assemble at the cell surface into hexamers via Fc:Fc interactions, which recruit complement component C1q and induce complement activation. Biophysical characterization of the C1:IgG complex has remained elusive primarily due to the low affinity of IgG-C1q binding. Using IgG variants that dynamically form hexamers efficient in C1q binding and complement activation, we could assess C1q binding in solution by native mass spectrometry and size-exclusion chromatography. Fc-domain deglycosylation, described to abrogate complement activation, affected IgG hexamerization and C1q binding. Strikingly, antigen binding by IgG hexamers or deletion of the Fab arms substantially potentiated complement initiation, suggesting that Fab-mediated effects impact downstream Fc-mediated events. Finally, we characterized a reconstituted 2,045.3 ± 0.4-kDa complex of intact C1 bound to antigen-saturated IgG hexamer by native mass spectrometry, providing a clear visualization of a complete complement initiation complex.


Asunto(s)
Antígenos/metabolismo , Activación de Complemento , Complemento C1q/metabolismo , Fragmentos Fab de Inmunoglobulinas/metabolismo , Inmunoglobulina G/metabolismo , Reacciones Antígeno-Anticuerpo , Antígenos/química , Antígenos/inmunología , Sitios de Unión de Anticuerpos , Línea Celular Tumoral , Cromatografía en Gel , Complemento C1q/química , Complemento C1q/inmunología , Glicosilación , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Mutación , Unión Proteica , Estabilidad Proteica , Espectrometría de Masas en Tándem
3.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33563762

RESUMEN

Immunoglobulin (Ig) G molecules are essential players in the human immune response against bacterial infections. An important effector of IgG-dependent immunity is the induction of complement activation, a reaction that triggers a variety of responses that help kill bacteria. Antibody-dependent complement activation is promoted by the organization of target-bound IgGs into hexamers that are held together via noncovalent Fc-Fc interactions. Here we show that staphylococcal protein A (SpA), an important virulence factor and vaccine candidate of Staphylococcus aureus, effectively blocks IgG hexamerization and subsequent complement activation. Using native mass spectrometry and high-speed atomic force microscopy, we demonstrate that SpA blocks IgG hexamerization through competitive binding to the Fc-Fc interaction interface on IgG monomers. In concordance, we show that SpA interferes with the formation of (IgG)6:C1q complexes and prevents downstream complement activation on the surface of S. aureus. Finally, we demonstrate that IgG3 antibodies against S. aureus can potently induce complement activation and opsonophagocytic killing even in the presence of SpA. Together, our findings identify SpA as an immune evasion protein that specifically blocks IgG hexamerization.


Asunto(s)
Activación de Complemento , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/metabolismo , Multimerización de Proteína , Proteína Estafilocócica A/metabolismo , Sitios de Unión , Células Cultivadas , Humanos , Fagocitos/inmunología , Fagocitosis , Unión Proteica , Staphylococcus aureus/inmunología
4.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34155115

RESUMEN

Complement is an important effector mechanism for antibody-mediated clearance of infections and tumor cells. Upon binding to target cells, the antibody's constant (Fc) domain recruits complement component C1 to initiate a proteolytic cascade that generates lytic pores and stimulates phagocytosis. The C1 complex (C1qr2s2) consists of the large recognition protein C1q and a heterotetramer of proteases C1r and C1s (C1r2s2). While interactions between C1 and IgG-Fc are believed to be mediated by the globular heads of C1q, we here find that C1r2s2 proteases affect the capacity of C1q to form an avid complex with surface-bound IgG molecules (on various 2,4-dinitrophenol [DNP]-coated surfaces and pathogenic Staphylococcus aureus). The extent to which C1r2s2 contributes to C1q-IgG stability strongly differs between human IgG subclasses. Using antibody engineering of monoclonal IgG, we reveal that hexamer-enhancing mutations improve C1q-IgG stability, both in the absence and presence of C1r2s2 In addition, hexamer-enhanced IgGs targeting S. aureus mediate improved complement-dependent phagocytosis by human neutrophils. Altogether, these molecular insights into complement binding to surface-bound IgGs could be important for optimal design of antibody therapies.


Asunto(s)
Membrana Celular/metabolismo , Complemento C1q/metabolismo , Complemento C1r/metabolismo , Complemento C1s/metabolismo , Inmunoglobulina G/metabolismo , Activación de Complemento , Humanos , Microscopía de Fuerza Atómica , Mutación/genética , Fagocitosis , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica , Staphylococcus aureus/inmunología
5.
Immunol Cell Biol ; 101(7): 657-662, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36997299

RESUMEN

The agonistic action of several immunomodulatory monoclonal antibodies (mAbs) requires both target antigen binding and clustering of this mAb:target complex by the Fcs interacting with Fcγ receptors (FcγRs), in particular FcγRIIb, on neighboring bystander cells. Fc mutations were made in the immunoglobulin G4 (IgG4)-based TGN1412 anti-CD28 mAb to define the role of FcγR interactions in its "super-agonist" activity. The dual mutation, IgG4-ED269,270 AA, ablated interaction with all human FcγRs and agonistic action was consequentially lost, confirming the FcγR dependence on the action of TGN1412. The IgG4 lower hinge region (F234 L235 G236 G237 ) was modified by L235 E mutation (F234 E235 G236 G237 ), a mutation commonly used to ablate FcγR binding, including in approved therapeutic mAbs. However, rather than ablating all FcγR binding, IgG4-L235 E conferred specific binding to FcγRIIb, the inhibitory Fc receptor. Furthermore, in combination with the core hinge-stabilizing mutation (IgG4-S228 P, L235 E), this mutation increased affinity for FcγRIIb compared with wild-type IgG4. In addition to having FcγRIIb specificity, these engineered TGN1412 antibodies retained their super-agonistic ability, demonstrating that CD28- and FcγRIIb-specific binding are together sufficient for agonistic function. The FcγRIIb-specific nature of IgG4-L235 E has utility for mAb-mediated immune agonism therapies that are dependent on FcγRIIb interaction and of anti-inflammatory mAbs in allergy and autoimmunity that harness FcγRIIb inhibitory signaling.


Asunto(s)
Inmunoglobulina G , Receptores de IgG , Humanos , Receptores de IgG/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Mutación/genética
6.
J Infect Dis ; 225(10): 1861-1864, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-34971376

RESUMEN

A safe and effective vaccine against multidrug-resistant gonorrhea is urgently needed. An experimental peptide vaccine called TMCP2 that mimics an oligosaccharide epitope in gonococcal lipooligosaccharide, when adjuvanted with glucopyranosyl lipid adjuvant-stable emulsion, elicits bactericidal immunoglobulin G and hastens clearance of gonococci in the mouse vaginal colonization model. In this study, we show that efficacy of TMCP2 requires an intact terminal complement pathway, evidenced by loss of activity in C9-/- mice or when C7 function was blocked. In conclusion, TMCP2 vaccine efficacy in the mouse vagina requires membrane attack complex. Serum bactericidal activity may serve as a correlate of protection for TMCP2.


Asunto(s)
Gonorrea , Neisseria gonorrhoeae , Animales , Vacunas Bacterianas , Proteínas del Sistema Complemento , Modelos Animales de Enfermedad , Femenino , Gonorrea/prevención & control , Lipopolisacáridos , Ratones
7.
J Biol Chem ; 296: 100641, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839159

RESUMEN

A bispecific antibody (BsAb) targeting the epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition factor (MET) pathways represents a novel approach to overcome resistance to targeted therapies in patients with non-small cell lung cancer. In this study, we sequentially screened a panel of BsAbs in a combinatorial approach to select the optimal bispecific molecule. The BsAbs were derived from different EGFR and MET parental monoclonal antibodies. Initially, molecules were screened for EGFR and MET binding on tumor cell lines and lack of agonistic activity toward MET. Hits were identified and further screened based on their potential to induce untoward cell proliferation and cross-phosphorylation of EGFR by MET via receptor colocalization in the absence of ligand. After the final step, we selected the EGFR and MET arms for the lead BsAb and added low fucose Fc engineering to generate amivantamab (JNJ-61186372). The crystal structure of the anti-MET Fab of amivantamab bound to MET was solved, and the interaction between the two molecules in atomic details was elucidated. Amivantamab antagonized the hepatocyte growth factor (HGF)-induced signaling by binding to MET Sema domain and thereby blocking HGF ß-chain-Sema engagement. The amivantamab EGFR epitope was mapped to EGFR domain III and residues K443, K465, I467, and S468. Furthermore, amivantamab showed superior antitumor activity over small molecule EGFR and MET inhibitors in the HCC827-HGF in vivo model. Based on its unique mode of action, amivantamab may provide benefit to patients with malignancies associated with aberrant EGFR and MET signaling.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Descubrimiento de Drogas , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Animales , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/inmunología , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Proteínas Proto-Oncogénicas c-met/inmunología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
PLoS Biol ; 17(6): e3000323, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31216278

RESUMEN

Multidrug-resistant Neisseria gonorrhoeae is a global health problem. Monoclonal antibody (mAb) 2C7 recognizes a gonococcal lipooligosaccharide epitope that is expressed by >95% of clinical isolates and hastens gonococcal vaginal clearance in mice. Chimeric mAb 2C7 (human immunoglobulin G1 [IgG1]) with an E430G Fc modification that enhances Fc:Fc interactions and hexamerization following surface-target binding and increases complement activation (HexaBody technology) showed significantly greater C1q engagement and C4 and C3 deposition compared to mAb 2C7 with wild-type Fc. Greater complement activation by 2C7-E430G Fc translated to increased bactericidal activity in vitro and, consequently, enhanced efficacy in mice, compared with "Fc-unmodified" chimeric 2C7. Gonococci bind the complement inhibitors factor H (FH) and C4b-binding protein (C4BP) in a human-specific manner, which dampens antibody (Ab)-mediated complement-dependent killing. The variant 2C7-E430G Fc overcame the barrier posed by these inhibitors in human FH/C4BP transgenic mice, for which a single 1 µg intravenous dose cleared established infection. Chlamydia frequently coexists with and exacerbates gonorrhea; 2C7-E430G Fc also proved effective against gonorrhea in gonorrhea/chlamydia-coinfected mice. Complement activation alone was necessary and sufficient for 2C7 function, evidenced by the fact that (1) "complement-inactive" Fc modifications that engaged Fc gamma receptor (FcγR) rendered 2C7 ineffective, nonetheless; (2) 2C7 was nonfunctional in C1q-/- mice, when C5 function was blocked, or in C9-/- mice; and (3) 2C7 remained effective in neutrophil-depleted mice and in mice treated with PMX205, a C5a receptor (C5aR1) inhibitor. We highlight the importance of complement activation for antigonococcal Ab function in the genital tract. Elucidating the correlates of protection against gonorrhea will inform the development of Ab-based gonococcal vaccines and immunotherapeutics.


Asunto(s)
Activación de Complemento/inmunología , Gonorrea/inmunología , Neisseria gonorrhoeae/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/metabolismo , Antígenos Bacterianos , Proteína de Unión al Complemento C4b/inmunología , Factor H de Complemento/inmunología , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Epítopos/inmunología , Femenino , Voluntarios Sanos , Humanos , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Neisseria gonorrhoeae/patogenicidad
9.
Infect Immun ; 88(2)2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31818965

RESUMEN

The sialylatable lacto-N-neotetraose (LNnT; Gal-GlcNAc-Gal-Glc) moiety from heptose I (HepI) of the lipooligosaccharide (LOS) of Neisseria gonorrhoeae undergoes positive selection during human infection. Lactose (Gal-Glc) from HepII, although phase variable, is commonly expressed in humans; loss of HepII lactose compromises gonococcal fitness in mice. Anti-LOS monoclonal antibody (MAb) 2C7, a promising antigonococcal immunotherapeutic that elicits complement-dependent bactericidal activity and attenuates gonococcal colonization in mice, recognizes an epitope comprised of lactoses expressed simultaneously from HepI and HepII. Glycan extensions beyond lactose on HepI modulate binding and function of MAb 2C7 in vitro Here, four gonococcal LOS mutants, each with lactose from HepII but fixed (unable to phase-vary) LOS HepI glycans extended beyond the lactose substitution of HepI (lactose alone, Gal-lactose, LNnT, or GalNAc-LNnT), were used to define how HepI glycan extensions affect (i) mouse vaginal colonization and (ii) efficacy in vitro and in vivo of a human IgG1 chimeric derivative of MAb 2C7 (2C7-Ximab) with a complement-enhancing E-to-G Fc mutation at position 430 (2C7-Ximab-E430G). About 10-fold lower 2C7-Ximab-E430G concentrations achieved similar complement-dependent killing of three gonococcal mutants with glycan extensions beyond lactose-substituted HepI (lactose alone, LNnT, or GalNAc-LNnT) as 2C7-Ximab (unmodified Fc). The fourth mutant (Gal-lactose) resisted direct complement-dependent killing but was killed approximately 70% by 2C7-Ximab-E430G in the presence of polymorphonuclear leukocytes and complement. Only mutants with (sialylatable) LNnT from HepI colonized mice for >3 days, reiterating the importance of LNnT sialylation for infection. 2C7-Ximab-E430G significantly attenuated colonization caused by the virulent mutants.


Asunto(s)
Anticuerpos Antibacterianos/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Gonorrea/terapia , Lipopolisacáridos/inmunología , Neisseria gonorrhoeae/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Ratones Endogámicos BALB C , Resultado del Tratamiento , Vagina/microbiología
10.
Nano Lett ; 19(7): 4787-4796, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31184907

RESUMEN

IgG antibodies play a central role in protection against pathogens by their ability to alert and activate the innate immune system. Here, we show that IgGs assemble into oligomers on antigenic surfaces through an ordered, Fc domain-mediated process that can be modulated by protein engineering. Using high-speed atomic force microscopy, we unraveled the molecular events of IgG oligomer formation on surfaces. IgG molecules were recruited from solution although assembly of monovalently binding molecules also occurred through lateral diffusion. Monomers were observed to assemble into hexamers with all intermediates detected, but in which only hexamers bound C1. Functional characterization of oligomers on cells also demonstrated that C1 binding to IgG hexamers was a prerequisite for maximal activation, whereas tetramers, trimers, and dimers were mostly inactive. We present a dynamic IgG oligomerization model, which provides a framework for exploiting the macromolecular assembly of IgGs on surfaces for tool, immunotherapy, and vaccine design.


Asunto(s)
Activación de Complemento , Complemento C1/química , Inmunoglobulina G/química , Multimerización de Proteína , Complemento C1/inmunología , Humanos , Inmunoglobulina G/inmunología
11.
Haematologica ; 104(9): 1841-1852, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30792198

RESUMEN

CD20 monoclonal antibody therapies have significantly improved the outlook for patients with B-cell malignancies. However, many patients acquire resistance, demonstrating the need for new and improved drugs. We previously demonstrated that the natural process of antibody hexamer formation on targeted cells allows for optimal induction of complement-dependent cytotoxicity. Complement-dependent cytotoxicity can be potentiated by introducing a single point mutation such as E430G in the IgG Fc domain that enhances intermolecular Fc-Fc interactions between cell-bound IgG molecules, thereby facilitating IgG hexamer formation. Antibodies specific for CD37, a target that is abundantly expressed on healthy and malignant B cells, are generally poor inducers of complement-dependent cytotoxicity. Here we demonstrate that introduction of the hexamerization-enhancing mutation E430G in CD37-specific antibodies facilitates highly potent complement-dependent cytotoxicity in chronic lymphocytic leukemia cells ex vivo Strikingly, we observed that combinations of hexamerization-enhanced CD20 and CD37 antibodies cooperated in C1q binding and induced superior and synergistic complement-dependent cytotoxicity in patient-derived cancer cells compared to the single agents. Furthermore, CD20 and CD37 antibodies colocalized on the cell membrane, an effect that was potentiated by the hexamerization-enhancing mutation. Moreover, upon cell surface binding, CD20 and CD37 antibodies were shown to form mixed hexameric antibody complexes consisting of both antibodies each bound to their own cognate target, so-called hetero-hexamers. These findings provide novel insights into the mechanisms of synergy in antibody-mediated complement-dependent cytotoxicity and provide a rationale to explore Fc-engineering and antibody hetero-hexamerization as a tool to enhance the cooperativity and therapeutic efficacy of antibody combinations.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antígenos CD20/inmunología , Antígenos de Neoplasias/inmunología , Proteínas del Sistema Complemento/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Leucemia Linfocítica Crónica de Células B/genética , Tetraspaninas/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Línea Celular Tumoral , Complemento C1q/inmunología , Transferencia Resonante de Energía de Fluorescencia , Humanos , Inmunoglobulina G/inmunología , Leucemia Linfocítica Crónica de Células B/sangre , Mutación , Unión Proteica , Rituximab/farmacología
12.
PLoS Biol ; 14(1): e1002344, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26736041

RESUMEN

IgG antibodies can organize into ordered hexamers on cell surfaces after binding their antigen. These hexamers bind the first component of complement C1 inducing complement-dependent target cell killing. Here, we translated this natural concept into a novel technology platform (HexaBody technology) for therapeutic antibody potentiation. We identified mutations that enhanced hexamer formation and complement activation by IgG1 antibodies against a range of targets on cells from hematological and solid tumor indications. IgG1 backbones with preferred mutations E345K or E430G conveyed a strong ability to induce conditional complement-dependent cytotoxicity (CDC) of cell lines and chronic lymphocytic leukemia (CLL) patient tumor cells, while retaining regular pharmacokinetics and biopharmaceutical developability. Both mutations potently enhanced CDC- and antibody-dependent cellular cytotoxicity (ADCC) of a type II CD20 antibody that was ineffective in complement activation, while retaining its ability to induce apoptosis. The identified IgG1 Fc backbones provide a novel platform for the generation of therapeutics with enhanced effector functions that only become activated upon binding to target cell-expressed antigen.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Inmunoglobulina G/metabolismo , Inmunoterapia/métodos , Animales , Línea Celular Tumoral , Activación de Complemento , Femenino , Humanos , Inmunoglobulina G/genética , Ratones SCID , Mutación , Trasplante de Neoplasias , Polimerizacion
13.
J Immunol ; 198(4): 1585-1594, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28062698

RESUMEN

Triggering of the complement cascade induces tumor cell lysis via complement-dependent cytotoxicity (CDC) and attracts and activates cytotoxic cells. It therefore represents an attractive mechanism for mAb in cancer immunotherapy development. The classical complement pathway is initiated by IgG molecules that have assembled into ordered hexamers after binding their Ag on the tumor cell surface. The requirements for CDC are further impacted by factors such as Ab epitope, valency, and affinity. Thus, mAb against well-validated solid tumor targets, such as the epidermal growth factor receptor (EGFR) that effectively induces complement activation and CDC, are highly sought after. The potency of complement activation by IgG Abs can be increased via several strategies. We identified single-point mutations in the Fc domain (e.g., E345K or E430G) enhancing Fc:Fc interactions, hexamer formation, and CDC after Ab binds cell-surface Ag. We show that EGFR Abs directed against clinically relevant epitopes can be converted into mAb with unprecedented CDC activity. Alternative strategies rely on increasing the affinity of monomeric IgG for C1q by introduction of a quadruple mutation at the C1q binding site or via generation of an IgG1/IgG3 chimera. In this study we show that selective enhancement of C1q binding via avidity modulation is superior to the unattended increase in C1q binding via affinity approaches, particularly for target cells with reduced EGFR expression levels. Improving Fc:Fc interactions of Ag-bound IgG therefore represents a highly promising and novel approach for potentiating the anti-tumor activity of therapeutic mAb against EGFR and potentially other tumor targets.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Citotoxicidad Celular Dependiente de Anticuerpos , Activación de Complemento , Receptores ErbB/inmunología , Inmunoglobulina G/inmunología , Anticuerpos Monoclonales/genética , Sitios de Unión , Línea Celular Tumoral , Complemento C1q/inmunología , Complemento C1q/metabolismo , Receptores ErbB/genética , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Inmunoterapia/métodos , Mutación , Mutación Puntual
14.
J Immunol ; 197(5): 1762-75, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27474078

RESUMEN

Recently, we demonstrated that IgG Abs can organize into ordered hexamers after binding their cognate Ags expressed on cell surfaces. This process is dependent on Fc:Fc interactions, which promote C1q binding, the first step in classical pathway complement activation. We went on to engineer point mutations that stimulated IgG hexamer formation and complement-dependent cytotoxicity (CDC). The hexamer formation-enhanced (HexaBody) CD20 and CD38 mAbs support faster, more robust CDC than their wild-type counterparts. To further investigate the CDC potential of these mAbs, we used flow cytometry, high-resolution digital imaging, and four-color confocal microscopy to examine their activity against B cell lines and primary chronic lymphocytic leukemia cells in sera depleted of single complement components. We also examined the CDC activity of alemtuzumab (anti-CD52) and mAb W6/32 (anti-HLA), which bind at high density to cells and promote substantial complement activation. Although we observed little CDC for mAb-opsonized cells reacted with sera depleted of early complement components, we were surprised to discover that the Hexabody mAbs, as well as ALM and W6/32, were all quite effective at promoting CDC in sera depleted of individual complement components C6 to C9. However, neutralization studies conducted with an anti-C9 mAb verified that C9 is required for CDC activity against cell lines. These highly effective complement-activating mAbs efficiently focus activated complement components on the cell, including C3b and C9, and promote CDC with a very low threshold of MAC binding, thus providing additional insight into their enhanced efficacy in promoting CDC.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos CD20/metabolismo , Antígenos/inmunología , Sitios de Unión de Anticuerpos , Complemento C9/metabolismo , Glicoproteínas de Membrana/metabolismo , ADP-Ribosil Ciclasa 1/inmunología , Alemtuzumab , Anticuerpos Monoclonales Humanizados/inmunología , Antígenos CD20/inmunología , Linfocitos B/inmunología , Línea Celular Tumoral , Activación de Complemento , Complemento C3b/metabolismo , Complemento C9/inmunología , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Humanos , Glicoproteínas de Membrana/inmunología
15.
J Immunol ; 197(12): 4829-4837, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27807190

RESUMEN

Human IgG1 type I CD20 Abs, such as rituximab and ofatumumab (OFA), efficiently induce complement-dependent cytotoxicity (CDC) of CD20+ B cells by binding of C1 to hexamerized Fc domains. Unexpectedly, we found that type I CD20 Ab F(ab')2 fragments, as well as C1q-binding-deficient IgG mutants, retained an ability to induce CDC, albeit with lower efficiency than for whole or unmodified IgG. Experiments using human serum depleted of specific complement components demonstrated that the observed lytic activity, which we termed "accessory CDC," remained to be dependent on C1 and the classical pathway. We hypothesized that CD20 Ab-induced clustering of the IgM or IgG BCR was involved in accessory CDC. Indeed, accessory CDC was consistently observed in B cell lines expressing an IgM BCR and in some cell lines expressing an IgG BCR, but it was absent in BCR- B cell lines. A direct relationship between BCR expression and accessory CDC was established by transfecting the BCR into CD20+ cells: OFA-F(ab')2 fragments were able to induce CDC in the CD20+BCR+ cell population, but not in the CD20+BCR- population. Importantly, OFA-F(ab')2 fragments were able to induce CDC ex vivo in malignant B cells isolated from patients with mantle cell lymphoma and Waldenström macroglobulinemia. In summary, accessory CDC represents a novel effector mechanism that is dependent on type I CD20 Ab-induced BCR clustering. Accessory CDC may contribute to the excellent capacity of type I CD20 Abs to induce CDC, and thereby to the antitumor activity of such Abs in the clinic.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos CD20/metabolismo , Linfocitos B/efectos de los fármacos , Vía Clásica del Complemento , Inmunoterapia Adoptiva/métodos , Linfoma de Células B/terapia , Rituximab/metabolismo , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Antígenos CD20/inmunología , Linfocitos B/inmunología , Línea Celular Tumoral , Complemento C1/metabolismo , Humanos , Fragmentos Fab de Inmunoglobulinas/metabolismo , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Inmunoglobulina M/genética , Inmunoglobulina M/metabolismo , Linfoma de Células B/inmunología , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Rituximab/genética , Rituximab/uso terapéutico
16.
Clin Immunol ; 181: 24-28, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28578024

RESUMEN

We examined complement-dependent cytotoxicity (CDC) by hexamer formation-enhanced CD20 mAb Hx-7D8 of patient-derived chronic lymphocytic leukemia (CLL) cells that are relatively resistant to CDC. CDC was analyzed in normal human serum (NHS) and serum from an individual genetically deficient for C9. Hx-7D8 was able to kill up to 80% of CLL cells in complete absence of C9. We conclude that the narrow C5b-8 pores formed without C9 are sufficient for CDC due to efficient antibody-mediated hexamer formation. In the absence of C9, we observed transient intracellular increases of Ca2+ during CDC (as assessed with FLUO-4) that were extended in time. This suggests that small C5b-8 pores allow Ca2+ to enter the cell, while dissipation of the fluorescent signal accompanying cell disintegration is delayed. The Ca2+ signal is retained concomitantly with TOPRO-3 (viability dye) staining, thereby confirming that Ca2+ influx represents the most proximate mediator of cell death by CDC.


Asunto(s)
Complemento C9/deficiencia , Proteínas del Sistema Complemento/inmunología , Síndromes de Inmunodeficiencia/inmunología , Leucemia Linfocítica Crónica de Células B , Rituximab/farmacología , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Complemento C9/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/metabolismo , Enfermedades por Deficiencia de Complemento Hereditario , Humanos , Inmunoterapia , Polimerizacion
17.
Anal Chem ; 89(20): 10873-10882, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28922593

RESUMEN

Bispecific antibodies (bsAbs) are one of the most versatile and promising pharmaceutical innovations for countering heterogeneous and refractory disease by virtue of their ability to bind two distinct antigens. One critical quality attribute of bsAb formation requiring investigation is the potential randomization of cognate heavy (H) chain/light (L) chain pairing, which could occur to a varying extent dependent on bsAb format and the production platform. To assess the content of such HL-chain swapped reaction products with high sensitivity, we developed cysteine-stable isotope labeling using amino acids in cell culture (SILAC), a method that facilitates the detailed characterization of disulfide-bridged peptides by mass spectrometry. For this analysis, an antibody was metabolically labeled with 13C3,15N-cysteine and incorporated into a comprehensive panel of distinct bispecific molecules by controlled Fab-arm exchange (DuoBody technology). This technology is a postproduction method for the generation of bispecific therapeutic IgGs of which several have progressed into the clinic. Herein, two parental antibodies, each containing a single heavy chain domain mutation, are mixed and subjected to controlled reducing conditions during which they exchange heavy-light (HL) chain pairs to form bsAbs. Subsequently, reductant is removed and all disulfide bridges are reoxidized to reform covalent inter- and intrachain bonds. We conducted a multilevel (Top-Middle-Bottom-Up) approach focusing on the characterization of both "left-arm" and "right-arm" HL interchain disulfide peptides and observed that native HL pairing was preserved in the whole panel of bsAbs produced by controlled Fab-arm exchange.


Asunto(s)
Anticuerpos Biespecíficos/química , Cisteína/química , Disulfuros/análisis , Inmunoglobulina G/química , Espectrometría de Masas en Tándem , Anticuerpos Biespecíficos/metabolismo , Antígenos CD20/inmunología , Isótopos de Carbono/química , Cromatografía Líquida de Alta Presión , Receptores ErbB/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/metabolismo , Inmunoglobulina G/metabolismo , Marcaje Isotópico , Isótopos de Nitrógeno/química
18.
Proc Natl Acad Sci U S A ; 110(13): 5145-50, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23479652

RESUMEN

The promise of bispecific antibodies (bsAbs) to yield more effective therapeutics is well recognized; however, the generation of bsAbs in a practical and cost-effective manner has been a formidable challenge. Here we present a technology for the efficient generation of bsAbs with normal IgG structures that is amenable to both antibody drug discovery and development. The process involves separate expression of two parental antibodies, each containing single matched point mutations in the CH3 domains. The parental antibodies are mixed and subjected to controlled reducing conditions in vitro that separate the antibodies into HL half-molecules and allow reassembly and reoxidation to form highly pure bsAbs. The technology is compatible with standard large-scale antibody manufacturing and ensures bsAbs with Fc-mediated effector functions and in vivo stability typical of IgG1 antibodies. Proof-of-concept studies with HER2×CD3 (T-cell recruitment) and HER2×HER2 (dual epitope targeting) bsAbs demonstrate superior in vivo activity compared with parental antibody pairs.


Asunto(s)
Anticuerpos Biespecíficos/biosíntesis , Fragmentos Fab de Inmunoglobulinas/biosíntesis , Fragmentos Fc de Inmunoglobulinas/biosíntesis , Inmunoglobulina G/biosíntesis , Animales , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/genética , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina G/química , Inmunoglobulina G/genética , Células Jurkat , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
19.
Cancer Gene Ther ; 31(1): 58-68, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37945970

RESUMEN

Antibody-mediated delivery of immunogenic epitopes to redirect virus-specific CD8+ T-cells towards cancer cells is an emerging and promising new therapeutic strategy. These so-called antibody-epitope conjugates (AECs) rely on the proteolytic release of the epitopes close to the tumor surface for presentation by HLA class I molecules to eventually redirect and activate virus-specific CD8+ T-cells towards tumor cells. We fused the immunogenic EBV-BRLF1 epitope preceded by a protease cleavage site to the C-terminus of the heavy and/or light chains of cetuximab and trastuzumab. We evaluated these AECs and found that, even though all AECs were able to redirect the EBV-specific T-cells, AECs with an epitope fused to the C-terminus of the heavy chain resulted in higher levels of T-cell activation compared to AECs with the same epitope fused to the light chain of an antibody. We observed that all AECs were depending on the presence of the antibody target, that the level of T-cell activation correlated with expression levels of the antibody target, and that our AECs could efficiently deliver the BRLF1 epitope to cancer cell lines from different origins (breast, ovarian, lung, and cervical cancer and a multiple myeloma). Moreover, in vivo, the AECs efficiently reduced tumor burden and increased the overall survival, which was prolonged even further in combination with immune checkpoint blockade. We demonstrate the potential of these genetically fused AECs to redirect the potent EBV-specific T-cells towards cancer in vitro and in vivo.


Asunto(s)
Inmunoconjugados , Neoplasias , Humanos , Linfocitos T CD8-positivos , Epítopos , Herpesvirus Humano 4/genética , Neoplasias/terapia , Epítopos de Linfocito T
20.
Nat Commun ; 15(1): 48, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167722

RESUMEN

CD3 bispecific antibody (CD3 bsAb) therapy is clinically approved for refractory hematological malignancies, but responses in solid tumors have been limited so far. One of the main hurdles in solid tumors is the lack of sufficient T-cell infiltrate. Here, we show that pre-treatment vaccination, even when composed of tumor-unrelated antigens, induces CXCR3-mediated T-cell influx in immunologically 'cold' tumor models in male mice. In the absence of CD3 bsAb, the infiltrate is confined to the tumor invasive margin, whereas subsequent CD3 bsAb administration induces infiltration of activated effector CD8 T cells into the tumor cell nests. This combination therapy installs a broadly inflamed Th1-type tumor microenvironment, resulting in effective tumor eradication. Multiple vaccination formulations, including synthetic long peptides and viruses, empower CD3 bsAb therapy. Our results imply that eliciting tumor infiltration with vaccine-induced tumor-(un)related T cells can greatly improve the efficacy of CD3 bsAbs in solid tumors.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Vacunas , Masculino , Animales , Ratones , Linfocitos T , Complejo CD3 , Neoplasias/tratamiento farmacológico , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Antígenos de Neoplasias , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA