Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS Biol ; 14(9): e1002563, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27684064

RESUMEN

Memories are assumed to be formed by sets of synapses changing their structural or functional performance. The efficacy of forming new memories declines with advancing age, but the synaptic changes underlying age-induced memory impairment remain poorly understood. Recently, we found spermidine feeding to specifically suppress age-dependent impairments in forming olfactory memories, providing a mean to search for synaptic changes involved in age-dependent memory impairment. Here, we show that a specific synaptic compartment, the presynaptic active zone (AZ), increases the size of its ultrastructural elaboration and releases significantly more synaptic vesicles with advancing age. These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP) impaired memory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem to steer towards the upper limit of their operational range, limiting synaptic plasticity and contributing to impairment of memory formation. Spermidine feeding suppresses age-dependent memory impairment by counteracting these age-dependent changes directly at the synapse.

2.
Learn Mem ; 24(5): 210-215, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28416632

RESUMEN

Here, we define a role of the cAMP intermediate EPAC in Drosophila aversive odor learning by means of null epac mutants. Complementation analysis revealed that EPAC acts downstream from the rutabaga adenylyl cyclase and in parallel to protein kinase A. By means of targeted knockdown and genetic rescue we identified mushroom body Kenyon cells (KCs) as a necessary and sufficient site of EPAC action. We provide mechanistic insights by analyzing acquisition dynamics and using the "performance increment" as a means to access the trial-based sequential organization of odor learning. Thereby we show that versatile cAMP-dependent mechanisms are engaged within a sequential order that correlate to individual trials of the training session.


Asunto(s)
Reacción de Prevención/fisiología , AMP Cíclico/metabolismo , Proteínas de Drosophila/genética , Factores de Intercambio de Guanina Nucleótido/genética , Trastornos de la Memoria/fisiopatología , Mutación/genética , Odorantes , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Trastornos de la Memoria/genética , Cuerpos Pedunculados/citología , Neuronas/fisiología , Interferencia de ARN/fisiología , Olfato/genética
3.
J Neurosci ; 36(30): 7936-45, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27466338

RESUMEN

UNLABELLED: Dopamine is central to reinforcement processing and exerts this function in species ranging from humans to fruit flies. It can do so via two different types of receptors (i.e., D1 or D2) that mediate either augmentation or abatement of cellular cAMP levels. Whereas D1 receptors are known to contribute to Drosophila aversive odor learning per se, we here show that D2 receptors are specific for support of a consolidated form of odor memory known as anesthesia-resistant memory. By means of genetic mosaicism, we localize this function to Kenyon cells, the mushroom body intrinsic neurons, as well as GABAergic APL neurons and local interneurons of the antennal lobes, suggesting that consolidated anesthesia-resistant memory requires widespread dopaminergic modulation within the olfactory circuit. Additionally, dopaminergic neurons themselves require D2R, suggesting a critical role in dopamine release via its recognized autoreceptor function. Considering the dual role of dopamine in balancing memory acquisition (proactive function of dopamine) and its "forgetting" (retroactive function of dopamine), our analysis suggests D2R as central player of either process. SIGNIFICANCE STATEMENT: Dopamine provides different information; while it mediates reinforcement during the learning act (proactive function), it balances memory performance between two antithetic processes thereafter (retroactive function) (i.e., forgetting and augmentation). Such bidirectional design can also be found at level of dopamine receptors, where augmenting D1 and abating D2 receptors are engaged to balance cellular cAMP levels. Here, we report that consolidated anesthesia-resistant memory (ARM), but not other concomitant memory phases, are sensitive to bidirectional dopaminergic signals. By means of genetic mosaicism, we identified widespread dopaminergic modulation within the olfactory circuit that suggests nonredundant and reiterating functions of D2R in support of ARM. Our results oppose ARM to its concomitant memory phases that localize to mushroom bodies and propose a decentralized organization of consolidated ARM.


Asunto(s)
Anestésicos/administración & dosificación , Drosophila/fisiología , Memoria/fisiología , Cuerpos Pedunculados/fisiología , Red Nerviosa/fisiología , Receptores de Dopamina D2/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Drosophila/efectos de los fármacos , Resistencia a Medicamentos/fisiología , Memoria/efectos de los fármacos , Distribución Tisular
4.
J Exp Biol ; 220(Pt 24): 4644-4653, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29237767

RESUMEN

The minuteness of Drosophila poses a challenge to quantify performance of its tubular heart and computer-aided analysis of its beating heart has evolved as a resilient compromise between instrumental costs and data robustness. Here, we introduce an optical flow algorithm (OFA) that continuously registers coherent movement within videos of the beating Drosophila heart and uses this information to subscribe the time course of observation with characteristic phases of cardiac contraction or relaxation. We report that the OFA combines high discriminatory power with robustness to characterize the performance of the Drosophila tubular heart using indicators from human cardiology. We provide proof of this concept using the test bed of established cardiac conditions that include the effects of ageing, knockdown of the slow repolarizing potassium channel subunit KCNQ and ras-mediated hypertrophy of the heart tube. Together, this establishes the analysis of coherent movement as a suitable indicator of qualitative changes of the heart's beating characteristics, which improves the usefulness of Drosophila as a model of cardiac diseases.


Asunto(s)
Drosophila/fisiología , Corazón/fisiología , Óptica y Fotónica/métodos , Envejecimiento/fisiología , Algoritmos , Animales , Técnicas In Vitro , Prueba de Estudio Conceptual
5.
J Cell Sci ; 126(Pt 3): 778-88, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23264735

RESUMEN

Cyclic AMP (cAMP) is a ubiquitous second messenger that regulates a variety of essential processes in diverse cell types, functioning via cAMP-dependent effectors such as protein kinase A (PKA) and/or exchange proteins directly activated by cAMP (EPAC). In an intact tissue it is difficult to separate the contribution of each cAMP effector in a particular cell type using genetic or pharmacological approaches alone. We, therefore, utilized optogenetics to overcome the difficulties associated with examining a multicellular tissue. The transgenic photoactive adenylyl cyclase bPAC can be activated to rapidly and reversibly generate cAMP pulses in a cell-type-specific manner. This optogenetic approach to cAMP manipulation was validated in vivo using GAL4-driven UAS-bPAC in a simple epithelium, the Drosophila renal (Malpighian) tubules. As bPAC was expressed under the control of cell-type-specific promoters, each cAMP signal could be directed to either the stellate or principal cells, the two major cell types of the Drosophila renal tubule. By combining the bPAC transgene with genetic and pharmacological manipulation of either PKA or EPAC it was possible to investigate the functional impact of PKA and EPAC independently of each other. The results of this investigation suggest that both PKA and EPAC are involved in cAMP sensing, but are engaged in very different downstream physiological functions in each cell type: PKA is necessary for basal secretion in principal cells only, and for stimulated fluid secretion in stellate cells only. By contrast, EPAC is important in stimulated fluid secretion in both cell types. We propose that such optogenetic control of cellular cAMP levels can be applied to other systems, for example the heart or the central nervous system, to investigate the physiological impact of cAMP-dependent signaling pathways with unprecedented precision.


Asunto(s)
Adenilil Ciclasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Células Epiteliales/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Túbulos de Malpighi/fisiología , Adenilil Ciclasas/genética , Animales , Animales Modificados Genéticamente , Comunicación Celular , Línea Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Túbulos de Malpighi/metabolismo , Optogenética , Especificidad de Órganos , Transducción de Señal
6.
J Neurosci ; 33(44): 17422-8, 2013 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-24174675

RESUMEN

Defining the molecular and neuronal basis of associative memories is based upon behavioral preparations that yield high performance due to selection of salient stimuli, strong reinforcement, and repeated conditioning trials. One of those preparations is the Drosophila aversive olfactory conditioning procedure where animals initiate multiple memory components after experience of a single cycle training procedure. Here, we explored the analysis of acquisition dynamics as a means to define memory components and revealed strong correlations between particular chronologies of shock impact and number experienced during the associative training situation and subsequent performance of conditioned avoidance. Analyzing acquisition dynamics in Drosophila memory mutants revealed that rutabaga (rut)-dependent cAMP signals couple in a divergent fashion for support of different memory components. In case of anesthesia-sensitive memory (ASM) we identified a characteristic two-step mechanism that links rut-AC1 to A-kinase anchoring proteins (AKAP)-sequestered protein kinase A at the level of Kenyon cells, a recognized center of olfactory learning within the fly brain. We propose that integration of rut-derived cAMP signals at level of AKAPs might serve as counting register that accounts for the two-step mechanism of ASM acquisition.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , Adenilil Ciclasas/fisiología , Proteínas de Drosophila/fisiología , Memoria/fisiología , Refuerzo en Psicología , Olfato/fisiología , Animales , AMP Cíclico/fisiología , Drosophila , Femenino , Masculino
7.
Proc Natl Acad Sci U S A ; 108(45): 18482-7, 2011 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-22042858

RESUMEN

Synaptic vesicle secretion requires the assembly of fusogenic SNARE complexes. Consequently proteins that regulate SNARE complex formation can significantly impact synaptic strength. The SNARE binding protein tomosyn has been shown to potently inhibit exocytosis by sequestering SNARE proteins in nonfusogenic complexes. The tomosyn-SNARE interaction is regulated by protein kinase A (PKA), an enzyme implicated in learning and memory, suggesting tomosyn could be an important effector in PKA-dependent synaptic plasticity. We tested this hypothesis in Drosophila, in which the role of the PKA pathway in associative learning has been well established. We first determined that panneuronal tomosyn knockdown by RNAi enhanced synaptic strength at the Drosophila larval neuromuscular junction, by increasing the evoked response duration. We next assayed memory performance 3 min (early memory) and 3 h (late memory) after aversive olfactory learning. Whereas early memory was unaffected by tomosyn knockdown, late memory was reduced by 50%. Late memory is a composite of stable and labile components. Further analysis determined that tomosyn was specifically required for the anesthesia-sensitive, labile component, previously shown to require cAMP signaling via PKA in mushroom bodies. Together these data indicate that tomosyn has a conserved role in the regulation of synaptic transmission and provide behavioral evidence that tomosyn is involved in a specific component of late associative memory.


Asunto(s)
Memoria , Odorantes , Proteínas R-SNARE/fisiología , Transmisión Sináptica/fisiología , Animales , Drosophila/fisiología , Inmunohistoquímica , Cuerpos Pedunculados/fisiología , Unión Neuromuscular/fisiología , Proteínas R-SNARE/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
J Neurosci ; 32(48): 17163-71, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23197709

RESUMEN

Memories are classified as consolidated (stable) or labile according to whether they withstand amnestic treatment, or not. In contrast to the general prevalence of this classification, its neuronal and molecular basis is poorly understood. Here, we focused on consolidated and labile memories induced after a single cycle training in the Drosophila aversive olfactory conditioning paradigm and we used mutants to define the impact of cAMP signals. At the biochemical level we report that cAMP signals misrelated in either rutabaga (rut) or dunce (dnc) mutants separate between consolidated anesthesia-resistant memory (ARM) and labile anesthesia-sensitive memory (ASM). Those functionally distinct cAMP signals act within different neuronal populations: while rut-dependent cAMP signals act within Kenyon cells (KCs) of the mushroom bodies to support ASM, dnc-sensitive cAMP signals support ARM within antennal lobe local neurons (LNs) and KCs. Collectively, different key positions along the olfactory circuitry seem to get modified during storage of ARM or ASM independently. A precise separation between those functionally distinct cAMP signals seems mandatory to allocate how they support appropriate memories.


Asunto(s)
Encéfalo/fisiología , Drosophila/fisiología , Memoria/fisiología , Cuerpos Pedunculados/fisiología , Neuronas/fisiología , Percepción Olfatoria/fisiología , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Animales Modificados Genéticamente , Reacción de Prevención/fisiología , Condicionamiento Operante/fisiología , AMP Cíclico/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Odorantes , Olfato/fisiología , Sinapsis/fisiología
9.
J Neurosci ; 32(43): 15193-204, 2012 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-23100440

RESUMEN

Neurobeachin (Nbea) is implicated in vesicle trafficking in the regulatory secretory pathway, but details on its molecular function are currently unknown. We have used Drosophila melanogaster mutants for rugose (rg), the Drosophila homolog of Nbea, to further elucidate the function of this multidomain protein. Rg is expressed in a granular pattern reminiscent of the Golgi network in neuronal cell bodies and colocalizes with transgenic Nbea, suggesting a function in secretory regulation. In contrast to Nbea(-/-) mice, rg null mutants are viable and fertile and exhibit aberrant associative odor learning, changes in gross brain morphology, and synaptic architecture as determined at the larval neuromuscular junction. At the same time, basal synaptic transmission is essentially unaffected, suggesting that structural and functional aspects are separable. Rg phenotypes can be rescued by a Drosophila rg+ transgene, whereas a mouse Nbea transgene rescues aversive odor learning and synaptic architecture; it fails to rescue brain morphology and appetitive odor learning. This dissociation between the functional redundancy of either the mouse or the fly transgene suggests that their complex composition of numerous functional and highly conserved domains support independent functions. We propose that the detailed compendium of phenotypes exhibited by the Drosophila rg null mutant provided here will serve as a test bed for dissecting the different functional domains of BEACH (for beige and human Chediak-Higashi syndrome) proteins, such as Rugose, mouse Nbea, or Nbea orthologs in other species, such as human.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , Aprendizaje por Asociación/fisiología , Encéfalo/citología , Proteínas de Drosophila/fisiología , Sinapsis/fisiología , Proteínas de Anclaje a la Quinasa A/deficiencia , Proteínas de Anclaje a la Quinasa A/genética , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Encéfalo/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Drosophila , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Peroxidasa de Rábano Silvestre/metabolismo , Masculino , Potenciales de la Membrana/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/citología , Unión Neuromuscular/genética , Neuronas/citología , Odorantes , Neuronas Receptoras Olfatorias/citología , Técnicas de Placa-Clamp , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , ARN Mensajero/metabolismo , Estadísticas no Paramétricas , Sinapsis/genética
10.
J Biol Chem ; 286(2): 1181-8, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21030594

RESUMEN

The recent success of channelrhodopsin in optogenetics has also caused increasing interest in enzymes that are directly activated by light. We have identified in the genome of the bacterium Beggiatoa a DNA sequence encoding an adenylyl cyclase directly linked to a BLUF (blue light receptor using FAD) type light sensor domain. In Escherichia coli and Xenopus oocytes, this photoactivated adenylyl cyclase (bPAC) showed cyclase activity that is low in darkness but increased 300-fold in the light. This enzymatic activity decays thermally within 20 s in parallel with the red-shifted BLUF photointermediate. bPAC is well expressed in pyramidal neurons and, in combination with cyclic nucleotide gated channels, causes efficient light-induced depolarization. In the Drosophila central nervous system, bPAC mediates light-dependent cAMP increase and behavioral changes in freely moving animals. bPAC seems a perfect optogenetic tool for light modulation of cAMP in neuronal cells and tissues and for studying cAMP-dependent processes in live animals.


Asunto(s)
Adenilil Ciclasas , Beggiatoa/enzimología , Beggiatoa/genética , AMP Cíclico/metabolismo , Luz , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/efectos de la radiación , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Drosophila/enzimología , Drosophila/genética , Activación Enzimática/efectos de la radiación , Escherichia coli/enzimología , Escherichia coli/genética , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Humanos , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/fisiología , Oocitos/fisiología , Fotoquímica , Ratas , Ratas Wistar , Xenopus
11.
J Neurosci ; 30(43): 14340-5, 2010 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-20980589

RESUMEN

At presynaptic active zones (AZs), the frequently observed tethering of synaptic vesicles to an electron-dense cytomatrix represents a process of largely unknown functional significance. Here, we identified a hypomorphic allele, brpnude, lacking merely the last 1% of the C-terminal amino acids (17 of 1740) of the active zone protein Bruchpilot. In brpnude, electron-dense bodies were properly shaped, though entirely bare of synaptic vesicles. While basal glutamate release was unchanged, paired-pulse and sustained stimulation provoked depression. Furthermore, rapid recovery following sustained release was slowed. Our results causally link, with intramolecular precision, the tethering of vesicles at the AZ cytomatrix to synaptic depression.


Asunto(s)
Proteínas de Drosophila/genética , Terminales Presinápticos/fisiología , Vesículas Sinápticas/genética , Vesículas Sinápticas/fisiología , Animales , Secuencia de Bases , Canales de Calcio/metabolismo , Citoplasma/metabolismo , Drosophila , Estimulación Eléctrica , Electrofisiología , Cinética , Larva , Microscopía Electrónica , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp
12.
Mol Biol Cell ; 16(5): 2433-42, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15772149

RESUMEN

The elaboration of neuronal axons and dendrites is dependent on a functional cytoskeleton. Cytoskeletal components have been shown to play a major role in the maintenance of the nervous system through adulthood, and changes in neurofilaments and microtubule-associated proteins (MAPs) have been linked to a variety of neurodegenerative diseases. Here we show that Futsch, the fly homolog of MAP1B, is involved in progressive neurodegeneration. Although Futsch is widely expressed throughout the CNS, degeneration in futsch(olk) primarily occurs in the olfactory system and mushroom bodies. Consistent with the predicted function of Futsch, we find abnormalities in the microtubule network and defects in axonal transport. Degeneration in the adult brain is preceded by learning deficits, revealing a neuronal dysfunction before detectable levels of cell death. Futsch is negatively regulated by the Drosophila Fragile X mental retardation gene, and a mutation in this gene delays the onset of neurodegeneration in futsch(olk). A similar effect is obtained by expression of either fly or bovine tau, suggesting a certain degree of functional redundancy of MAPs. The futsch(olk) mutants exhibit several characteristics of human neurodegenerative diseases, providing an opportunity to study the role of MAPs in progressive neurodegeneration within an experimentally accessible, in vivo model system.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Factores de Crecimiento Nervioso/fisiología , Animales , Animales Modificados Genéticamente , Transporte Axonal , Bovinos , Citoesqueleto/fisiología , Drosophila/genética , Proteínas de Drosophila/genética , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Genes de Insecto , Masculino , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/metabolismo , Mutación , Degeneración Nerviosa/genética , Degeneración Nerviosa/fisiopatología , Factores de Crecimiento Nervioso/genética , Neuronas/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/fisiología , Olfato/genética , Olfato/fisiología , Proteínas tau/genética , Proteínas tau/fisiología
13.
Neuron ; 98(2): 350-365.e5, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29673482

RESUMEN

A key function of the brain is to filter essential information and store it in the form of stable, long-term memory (LTM). We demonstrate here that the Dunce (Dnc) phosphodiesterase, an important enzyme that degrades cAMP, acts as a molecular switch that controls LTM formation in Drosophila. We show that, during LTM formation, Dnc is inhibited in the SPN, a pair of newly characterized serotonergic neurons, which stimulates the cAMP/PKA pathway. As a consequence, the SPN activates downstream dopaminergic neurons, opening the gate for LTM formation in the olfactory memory center, the mushroom body. Strikingly, transient inhibition of Dnc in the SPN by RNAi was sufficient to induce LTM formation with a training protocol that normally generates only short-lived memory. Thus, Dnc activity in the SPN acts as a memory checkpoint to guarantee that only the most relevant learned experiences are consolidated into stable memory.


Asunto(s)
Proteínas de Drosophila/metabolismo , Locomoción/fisiología , Memoria a Largo Plazo/fisiología , Neuronas Serotoninérgicas/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/análisis , Drosophila melanogaster , Femenino , Neuronas Serotoninérgicas/química
14.
Methods Mol Biol ; 1408: 93-105, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26965118

RESUMEN

As a transformative approach in neuroscience and cell biology, optogenetics grants control over manifold cellular events with unprecedented spatiotemporal definition, reversibility, and noninvasiveness. Sensory photoreceptors serve as genetically encoded, light-regulated actuators and hence embody the cornerstone of optogenetics. To expand the scope of optogenetics, ever more naturally occurring photoreceptors are being characterized, and synthetic photoreceptors with customized, light-regulated function are being engineered. Perturbational control over intracellular cyclic-nucleotide-monophosphate (cNMP) levels is achieved via sensory photoreceptors that catalyze the making and breaking of these second messengers in response to light. To facilitate discovery, engineering and quantitative characterization of such light-regulated cNMP actuators, we have developed an efficient fluorometric assay. Both the formation and the hydrolysis of cNMPs are accompanied by proton release which can be quantified with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). This assay equally applies to nucleotide cyclases, e.g., blue-light-activated bPAC, and to cNMP phosphodiesterases, e.g., red-light-activated LAPD. Key benefits include potential for parallelization and automation, as well as suitability for both purified enzymes and crude cell lysates. The BCECF assay hence stands to accelerate discovery and characterization of light-regulated actuators of cNMP metabolism.


Asunto(s)
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Fluorometría/métodos , Luz , Adenilil Ciclasas/metabolismo , Animales , AMP Cíclico/análisis , GMP Cíclico/análisis , Pruebas de Enzimas/métodos , Escherichia coli/metabolismo , Fluoresceínas/química , Guanilato Ciclasa/metabolismo , Humanos , Hidrólisis , Optogenética/métodos , Hidrolasas Diéster Fosfóricas/metabolismo
15.
Methods Mol Biol ; 1294: 131-5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25783882

RESUMEN

Photoactivatable adenylyl cyclases (PACs) are proteins that combine the capacity of a photoreceptor with that of an adenylyl cyclase. When ectopically expressed under the control of specific promoters, these naturally occurring proteins become potent transgenic tools that facilitate the increase of cellular cAMP levels by the use of light. Currently, three different PAC transgenes-the euglenoid euPACα and euPACß, as well as the b eggiatoan bPac-are available. These transgenic tools provide cyclase activity capable of increasing cellular cAMP levels up to a hundredfold with either phasic- or tonic-like kinetic characteristics. Here, we consider the functional features of different cyclases and provide operating guidelines to optimize the use of PACs in vivo.


Asunto(s)
Adenilil Ciclasas/metabolismo , AMP Cíclico/metabolismo , Células Fotorreceptoras/metabolismo , Transgenes , Adenilil Ciclasas/genética , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/metabolismo , Encéfalo/metabolismo , Cinética , Luz , Proteínas Protozoarias/metabolismo , Transducción de Señal
16.
Elife ; 32014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25392983

RESUMEN

CIDE-N domains mediate interactions between the DNase Dff40/CAD and its inhibitor Dff45/ICAD. In this study, we report that the CIDE-N protein Drep-2 is a novel synaptic protein important for learning and behavioral adaptation. Drep-2 was found at synapses throughout the Drosophila brain and was strongly enriched at mushroom body input synapses. It was required within Kenyon cells for normal olfactory short- and intermediate-term memory. Drep-2 colocalized with metabotropic glutamate receptors (mGluRs). Chronic pharmacological stimulation of mGluRs compensated for drep-2 learning deficits, and drep-2 and mGluR learning phenotypes behaved non-additively, suggesting that Drep 2 might be involved in effective mGluR signaling. In fact, Drosophila fragile X protein mutants, shown to benefit from attenuation of mGluR signaling, profited from the elimination of drep-2. Thus, Drep-2 is a novel regulatory synaptic factor, probably intersecting with metabotropic signaling and translational regulation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Memoria , Sinapsis/metabolismo , Animales , Apoptosis , Condicionamiento Psicológico , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Espectrometría de Masas , Cuerpos Pedunculados/metabolismo , Mutación , Neuronas/citología , Neuronas/metabolismo , Fenotipo , Densidad Postsináptica/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Olfato
17.
Front Behav Neurosci ; 4: 27, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20577637

RESUMEN

Olfactory stimulation induces an odor-guided crawling behavior of Drosophila melanogaster larvae characterized by either an attractive or a repellent reaction. In order to understand the underlying processes leading to these orientations we stimulated single olfactory receptor neurons (ORNs) through photo-activation within an intact neuronal network. Using the Gal4-UAS system two light inducible proteins, the light-sensitive cation channel channelrhodopsin-2 (ChR-2) or the light-sensitive adenylyl cyclase (Pacalpha) were expressed in all or in individual ORNs of the larval olfactory system. Blue light stimulation caused an activation of these neurons, ultimately producing the illusion of an odor stimulus. Larvae were tested in a phototaxis assay for their orientation toward or away from the light source. Here we show that activation of Pacalpha expressing ORNs bearing the receptors Or33b or Or45a in blind norpA mutant larvae induces a repellent behavior away from the light. Conversely, photo-activation of the majority of ORNs induces attraction towards the light. Interestingly, in wild type larvae two ligands of Or33b and Or45a, octyl acetate and propionic ethylester, respectively, have been found to cause an escape reaction. Therefore, we combined light and odor stimulation to analyze the function of Or33b and Or45a expressing ORNs. We show that the larval olfactory system contains a designated neuronal pathway for repellent odorants and that activation of a specific class of ORNs already determines olfactory avoidance behavior.

18.
Nat Methods ; 4(1): 39-42, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17128267

RESUMEN

The flagellate Euglena gracilis contains a photoactivated adenylyl cyclase (PAC), consisting of the flavoproteins PACalpha and PACbeta. Here we report functional expression of PACs in Xenopus laevis oocytes, HEK293 cells and in Drosophila melanogaster, where neuronal expression yields light-induced changes in behavior. The activity of PACs is strongly and reversibly enhanced by blue light, providing a powerful tool for light-induced manipulation of cAMP in animal cells.


Asunto(s)
Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/efectos de la radiación , AMP Cíclico/metabolismo , Luz , Adenilil Ciclasas/genética , Animales , Animales Modificados Genéticamente , Línea Celular , AMP Cíclico/análisis , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Drosophila melanogaster/efectos de la radiación , Activación Enzimática/efectos de la radiación , Euglena gracilis/enzimología , Técnicas de Transferencia de Gen , Humanos , Factores de Tiempo , Xenopus laevis
19.
Eur J Neurosci ; 20(3): 611-22, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15255973

RESUMEN

Vertebrate synapsins are abundant synaptic vesicle phosphoproteins that have been proposed to fine-regulate neurotransmitter release by phosphorylation-dependent control of synaptic vesicle motility. However, the consequences of a total lack of all synapsin isoforms due to a knock-out of all three mouse synapsin genes have not yet been investigated. In Drosophila a single synapsin gene encodes several isoforms and is expressed in most synaptic terminals. Thus the targeted deletion of the synapsin gene of Drosophila eliminates the possibility of functional knock-out complementation by other isoforms. Unexpectedly, synapsin null mutant flies show no obvious defects in brain morphology, and no striking qualitative changes in behaviour are observed. Ultrastructural analysis of an identified 'model' synapse of the larval nerve muscle preparation revealed no difference between wild-type and mutant, and spontaneous or evoked excitatory junction potentials at this synapse were normal up to a stimulus frequency of 5 Hz. However, when several behavioural responses were analysed quantitatively, specific differences between mutant and wild-type flies are noted. Adult locomotor activity, optomotor responses at high pattern velocities, wing beat frequency, and visual pattern preference are modified. Synapsin mutant flies show faster habituation of an olfactory jump response, enhanced ethanol tolerance, and significant defects in learning and memory as measured using three different paradigms. Larval behavioural defects are described in a separate paper. We conclude that Drosophila synapsins play a significant role in nervous system function, which is subtle at the cellular level but manifests itself in complex behaviour.


Asunto(s)
Conducta Animal/fisiología , Drosophila/fisiología , Sinapsinas/deficiencia , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Western Blotting/métodos , Depresores del Sistema Nervioso Central/farmacología , Clonación Molecular/métodos , Condicionamiento Operante/fisiología , Análisis Mutacional de ADN , Drosophila/genética , Estimulación Eléctrica/métodos , Etanol/farmacología , Potenciales Postsinápticos Excitadores/genética , Inmunohistoquímica/métodos , Técnicas de Inmunoadsorción , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Microscopía Electrónica , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Mutagénesis/fisiología , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/fisiología , Desempeño Psicomotor/fisiología , Conducta Sexual/efectos de los fármacos , Conducta Sexual/fisiología , Sinapsis/metabolismo , Sinapsis/ultraestructura , Sinapsinas/genética , Sinapsinas/fisiología , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , Factores de Tiempo , Distribución Tisular , Percepción Visual/genética , Percepción Visual/fisiología , Caminata/fisiología , Alas de Animales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA