RESUMEN
Proteomic analysis of cells, tissues and body fluids has generated valuable insights into the complex processes influencing human biology. Proteins represent intermediate phenotypes for disease and provide insight into how genetic and non-genetic risk factors are mechanistically linked to clinical outcomes. Associations between protein levels and DNA sequence variants that colocalize with risk alleles for common diseases can expose disease-associated pathways, revealing novel drug targets and translational biomarkers. However, genome-wide, population-scale analyses of proteomic data are only now emerging. Here, we review current findings from studies of the plasma proteome and discuss their potential for advancing biomedical translation through the interpretation of genome-wide association analyses. We highlight the challenges faced by currently available technologies and provide perspectives relevant to their future application in large-scale biobank studies.
Asunto(s)
Proteínas Sanguíneas/análisis , Estudio de Asociación del Genoma Completo , Proteoma/genética , Proteómica , Biomarcadores/análisis , Humanos , FenotipoRESUMEN
GABAB receptors (GBRs), the G protein-coupled receptors for GABA, regulate synaptic transmission throughout the brain. A main synaptic function of GBRs is the gating of Cav2.2-type Ca2+ channels. However, the cellular compartment where stable GBR/Cav2.2 signaling complexes form remains unknown. In this study, we demonstrate that the vesicular protein synaptotagmin-11 (Syt11) binds to both the auxiliary GBR subunit KCTD16 and Cav2.2 channels. Through these dual interactions, Syt11 recruits GBRs and Cav2.2 channels to post-Golgi vesicles, thus facilitating assembly of GBR/Cav2.2 signaling complexes. In addition, Syt11 stabilizes GBRs and Cav2.2 channels at the neuronal plasma membrane by inhibiting constitutive internalization. Neurons of Syt11 knockout mice exhibit deficits in presynaptic GBRs and Cav2.2 channels, reduced neurotransmitter release, and decreased GBR-mediated presynaptic inhibition, highlighting the critical role of Syt11 in the assembly and stable expression of GBR/Cav2.2 complexes. These findings support that Syt11 acts as a vesicular scaffold protein, aiding in the assembly of signaling complexes from low-abundance components within transport vesicles. This mechanism enables insertion of pre-assembled functional signaling units into the synaptic membrane.
Asunto(s)
Ratones Noqueados , Transducción de Señal , Sinaptotagminas , Animales , Sinaptotagminas/metabolismo , Sinaptotagminas/genética , Ratones , Humanos , Neuronas/metabolismo , Transmisión Sináptica , Receptores de GABA-B/metabolismo , Receptores de GABA-B/genética , Terminales Presinápticos/metabolismo , Canales de Calcio Tipo N/metabolismo , Canales de Calcio Tipo N/genética , Aparato de Golgi/metabolismo , Unión Proteica , Células HEK293RESUMEN
G protein-coupled receptors (GPCRs) are known to interact with several other classes of integral membrane proteins that modulate their biology and pharmacology. However, the extent of these interactions and the mechanisms of their effects are not well understood. For example, one class of GPCR-interacting proteins, receptor activity-modifying proteins (RAMPs), comprise three related and ubiquitously expressed single-transmembrane span proteins. The RAMP family was discovered more than two decades ago, and since then GPCR-RAMP interactions and their functional consequences on receptor trafficking and ligand selectivity have been documented for several secretin (class B) GPCRs, most notably the calcitonin receptor-like receptor. Recent bioinformatics and multiplexed experimental studies suggest that GPCR-RAMP interactions might be much more widespread than previously anticipated. Recently, cryo-electron microscopy has provided high-resolution structures of GPCR-RAMP-ligand complexes, and drugs have been developed that target GPCR-RAMP complexes. In this review, we provide a summary of recent advances in techniques that allow the discovery of GPCR-RAMP interactions and their functional consequences and highlight prospects for future advances. We also provide an up-to-date list of reported GPCR-RAMP interactions based on a review of the current literature. SIGNIFICANCE STATEMENT: Receptor activity-modifying proteins (RAMPs) have emerged as modulators of many aspects of G protein-coupled receptor (GPCR)biology and pharmacology. The application of new methodologies to study membrane protein-protein interactions suggests that RAMPs interact with many more GPCRs than had been previously known. These findings, especially when combined with structural studies of membrane protein complexes, have significant implications for advancing GPCR-targeted drug discovery and the understanding of GPCR pharmacology, biology, and regulation.
Asunto(s)
Proteínas de la Membrana , Receptores Acoplados a Proteínas G , Humanos , Proteínas Modificadoras de la Actividad de Receptores/metabolismo , Ligandos , Microscopía por Crioelectrón , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de la Membrana/metabolismoRESUMEN
Recent improvements in proteomics technologies have fundamentally altered our capacities to characterize human biology. There is an ever-growing interest in using these novel methods for studying the circulating proteome, as blood offers an accessible window into human health. However, every methodological innovation and analytical progress calls for reassessing our existing approaches and routines to ensure that the new data will add value to the greater biomedical research community and avoid previous errors. As representatives of HUPO's Human Plasma Proteome Project (HPPP), we present our 2024 survey of the current progress in our community, including the latest build of the Human Plasma Proteome PeptideAtlas that now comprises 4608 proteins detected in 113 data sets. We then discuss the updates of established proteomics methods, emerging technologies, and investigations of proteoforms, protein networks, extracellualr vesicles, circulating antibodies and microsamples. Finally, we provide a prospective view of using the current and emerging proteomics tools in studies of circulating proteins.
RESUMEN
AIMS/HYPOTHESIS: Type 2 diabetes is a chronic condition that is caused by hyperglycaemia. Our aim was to characterise the metabolomics to find their association with the glycaemic spectrum and find a causal relationship between metabolites and type 2 diabetes. METHODS: As part of the Innovative Medicines Initiative - Diabetes Research on Patient Stratification (IMI-DIRECT) consortium, 3000 plasma samples were measured with the Biocrates AbsoluteIDQ p150 Kit and Metabolon analytics. A total of 911 metabolites (132 targeted metabolomics, 779 untargeted metabolomics) passed the quality control. Multivariable linear and logistic regression analysis estimates were calculated from the concentration/peak areas of each metabolite as an explanatory variable and the glycaemic status as a dependent variable. This analysis was adjusted for age, sex, BMI, study centre in the basic model, and additionally for alcohol, smoking, BP, fasting HDL-cholesterol and fasting triacylglycerol in the full model. Statistical significance was Bonferroni corrected throughout. Beyond associations, we investigated the mediation effect and causal effects for which causal mediation test and two-sample Mendelian randomisation (2SMR) methods were used, respectively. RESULTS: In the targeted metabolomics, we observed four (15), 34 (99) and 50 (108) metabolites (number of metabolites observed in untargeted metabolomics appear in parentheses) that were significantly different when comparing normal glucose regulation vs impaired glucose regulation/prediabetes, normal glucose regulation vs type 2 diabetes, and impaired glucose regulation vs type 2 diabetes, respectively. Significant metabolites were mainly branched-chain amino acids (BCAAs), with some derivatised BCAAs, lipids, xenobiotics and a few unknowns. Metabolites such as lysophosphatidylcholine a C17:0, sum of hexoses, amino acids from BCAA metabolism (including leucine, isoleucine, valine, N-lactoylvaline, N-lactoylleucine and formiminoglutamate) and lactate, as well as an unknown metabolite (X-24295), were associated with HbA1c progression rate and were significant mediators of type 2 diabetes from baseline to 18 and 48 months of follow-up. 2SMR was used to estimate the causal effect of an exposure on an outcome using summary statistics from UK Biobank genome-wide association studies. We found that type 2 diabetes had a causal effect on the levels of three metabolites (hexose, glutamate and caproate [fatty acid (FA) 6:0]), whereas lipids such as specific phosphatidylcholines (PCs) (namely PC aa C36:2, PC aa C36:5, PC ae C36:3 and PC ae C34:3) as well as the two n-3 fatty acids stearidonate (18:4n3) and docosapentaenoate (22:5n3) potentially had a causal role in the development of type 2 diabetes. CONCLUSIONS/INTERPRETATION: Our findings identify known BCAAs and lipids, along with novel N-lactoyl-amino acid metabolites, significantly associated with prediabetes and diabetes, that mediate the effect of diabetes from baseline to follow-up (18 and 48 months). Causal inference using genetic variants shows the role of lipid metabolism and n-3 fatty acids as being causal for metabolite-to-type 2 diabetes whereas the sum of hexoses is causal for type 2 diabetes-to-metabolite. Identified metabolite markers are useful for stratifying individuals based on their risk progression and should enable targeted interventions.
RESUMEN
Cholestatic itch is a severe and debilitating symptom in liver diseases with limited treatment options. The class A G protein-coupled receptor (GPCR) Mas-related GPCR subtype X4 (MRGPRX4) has been identified as a receptor for bile acids, which are potential cholestatic pruritogens. An increasing number of GPCRs have been shown to interact with receptor activity-modifying proteins (RAMPs), which can modulate different aspects of GPCR biology. Using a combination of multiplexed immunoassay and proximity ligation assay, we show that MRGPRX4 interacts with RAMPs. The interaction of MRGPRX4 with RAMP2, but not RAMP1 or 3, causes attenuation of basal and agonist-dependent signaling, which correlates with a decrease of MRGPRX4 cell surface expression as measured using a quantitative NanoBRET pulse-chase assay. Finally, we use AlphaFold Multimer to predict the structure of the MRGPRX4-RAMP2 complex. The discovery that RAMP2 regulates MRGPRX4 may have direct implications for future drug development for cholestatic itch.
Asunto(s)
Prurito , Proteínas Modificadoras de la Actividad de Receptores , Receptores Acoplados a Proteínas G , Membrana Celular/metabolismo , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Proteína 2 Modificadora de la Actividad de Receptores/metabolismo , Proteína 3 Modificadora de la Actividad de Receptores/metabolismo , Proteínas Modificadoras de la Actividad de Receptores/química , Proteínas Modificadoras de la Actividad de Receptores/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Prurito/metabolismo , Unión Proteica , HumanosRESUMEN
OBJECTIVE: Current breast cancer risk prediction scores and algorithms can potentially be further improved by including molecular markers. To this end, we studied the association of circulating plasma proteins using Proximity Extension Assay (PEA) with incident breast cancer risk. SUBJECTS: In this study, we included 1577 women participating in the prospective KARMA mammographic screening cohort. RESULTS: In a targeted panel of 164 proteins, we found 8 candidates nominally significantly associated with short-term breast cancer risk (P < 0.05). Similarly, in an exploratory panel consisting of 2204 proteins, 115 were found nominally significantly associated (P < 0.05). However, none of the identified protein levels remained significant after adjustment for multiple testing. This lack of statistically significant findings was not due to limited power, but attributable to the small effect sizes observed even for nominally significant proteins. Similarly, adding plasma protein levels to established risk factors did not improve breast cancer risk prediction accuracy. CONCLUSIONS: Our results indicate that the levels of the studied plasma proteins captured by the PEA method are unlikely to offer additional benefits for risk prediction of short-term overall breast cancer risk but could provide interesting insights into the biological basis of breast cancer in the future.
Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/diagnóstico , Estudios Prospectivos , Proteómica , Mamografía/métodos , Factores de Riesgo , Proteínas SanguíneasRESUMEN
BACKGROUND: Numerous studies have investigated links between body mass index (BMI) trajectories and cardiovascular risk, yet discrepancies in BMI measurement duration and timing of the cardiovascular-related outcome evaluation have led to inconsistent findings. METHODS: We included participants from the Swedish birth cohort (BAMSE) and applied latent class mixture modeling to identify BMI trajectories using data of multiple BMI measures (≥ 4 times) from birth until 24-year follow-up (n = 3204). Subsequently, we analyzed the associations of BMI trajectories with lipids (n = 1974), blood pressure (n = 2022), HbA1c (n = 941), and blood leukocytes (n = 1973) using linear regression. We also investigated the circulating levels of 92 inflammation-related proteins (n = 1866) across BMI trajectories. RESULTS: Six distinct BMI groups were identified, denoted as increasing-persistent high (n = 74; 2.3%), high-accelerated increasing (n = 209; 6.5%), increasing-accelerated resolving (n = 142; 4.4%), normal-above normal (n = 721; 22.5%), stable normal (n = 1608; 50.2%), and decreasing-persistent low (n = 450; 14.1%) BMI groups. The increasing-persistent high and high-accelerated increasing BMI groups had higher levels of total cholesterol [mean difference (95% confidence intervals): 0.30 (0.04-0.56) and 0.16 (0.02-0.31) mmol/L], triglyceride, low-density lipoprotein, hemoglobin A1C [3.61 (2.17-5.54) and 1.18 (0.40-1.98) mmol/mol], and low-density lipoprotein/high-density lipoprotein ratios, but a lower level of high-density lipoprotein than the stable normal BMI group. These two groups also had higher leukocyte cell counts and higher circulating levels of 28 inflammation-related proteins. No increased cardiometabolic markers were observed in the increasing-accelerated resolving BMI group. CONCLUSIONS: Participants with persistently high or accelerated increasing BMI trajectories from birth to young adulthood have elevated levels of cardiometabolic risk markers at young adulthood than those with stable normal BMI. However, a raised BMI in childhood may not be inherently harmful to cardiometabolic health, provided it does not persist into adulthood.
Asunto(s)
Índice de Masa Corporal , Humanos , Masculino , Femenino , Suecia/epidemiología , Adulto Joven , Adolescente , Niño , Adulto , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/sangre , Preescolar , Recién Nacido , Lactante , Presión Sanguínea/fisiología , Cohorte de Nacimiento , Lípidos/sangre , Factores de Riesgo Cardiometabólico , Hemoglobina Glucada/análisis , Hemoglobina Glucada/metabolismoRESUMEN
Patient-centric sampling strategies, where the patient performs self-sampling and ships the sample to a centralized laboratory for readout, are on the verge of widespread adaptation. However, the key to a successful patient-centric workflow is user-friendliness, with few noncritical user interactions, and simple, ideally biohazard-free shipment. Here, we present a capillary-driven microfluidic device designed to perform the critical biomarker capturing step of a multiplexed immunoassay at the time of sample collection. On-chip sample drying enables biohazard-free shipment and allows us to make use of advanced analytics of specialized laboratories that offer the needed analytical sensitivity, reliability, and affordability. Using C-Reactive Protein, MCP1, S100B, IGFBP1, and IL6 as model blood biomarkers, we demonstrate the multiplexing capability and applicability of the device to a patient-centric workflow. The presented quantification of a biomarker panel opens up new possibilities for e-doctor and e-health applications.
Asunto(s)
Laboratorios , Técnicas Analíticas Microfluídicas , Humanos , Reproducibilidad de los Resultados , Inmunoensayo , Biomarcadores , Dispositivos Laboratorio en un Chip , Atención Dirigida al PacienteRESUMEN
BACKGROUND: Patients with liver cirrhosis are recommended ultrasonography screening for early detection of hepatocellular carcinoma to increase the chances of curative treatment. However, ultrasonography alone lacks in sensitivity. Adding plasma biomarkers may increase the detection rate. We performed a broad exploratory analysis to find new plasma proteins with potential applicability for HCC screening in patients with cirrhosis. METHODS: In a protein discovery cohort of 172 patients with cirrhosis or HCC, we screened for 481 proteins with suspension bead array or proximity extension assay. From these, 24 proteins were selected for further analysis in a protein verification cohort (n = 160), using ELISA, Luminex or an electrochemiluminescence platform. A cut-off model and a stepwise logistic regression model were used to find combinations of proteins with the best discriminatory performance between HCC and cirrhosis. RESULTS: Stepwise logistic regression revealed alpha-fetoprotein (AFP), decarboxy-prothrombin (DCP), thioredoxin reductase 1 (TXNRD1), and fibroblast growth factor 21 (FGF21) as the proteins with the best discriminatory performance between HCC and cirrhosis. Adding TXNRD1 to DCP and AFP increased the AUC from 0.844 to 0.878, and combining AFP, DCP and TXNRD1 with age and sex resulted in an AUC of 0.920. FGF21, however, did not further increase the performance when including age and sex. CONCLUSION: In the present study, TXNRD1 improves the sensitivity and specificity of AFP and DCP as HCC screening tools in patients with cirrhosis. We suggest that TXNRD1 should be validated in prospective settings as a new complementary HCC biomarker together with AFP and DCP.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Tiorredoxina Reductasa 1 , Humanos , alfa-Fetoproteínas/análisis , Biomarcadores , Biomarcadores de Tumor , Carcinoma Hepatocelular/diagnóstico por imagen , Cirrosis Hepática/diagnóstico , Neoplasias Hepáticas/diagnóstico por imagen , Estudios Prospectivos , Precursores de Proteínas , Protrombina , Sensibilidad y EspecificidadRESUMEN
The Health Effects of Cardiac Fluoroscopy and Modern Radiotherapy (photon and proton) in Pediatrics (HARMONIC) is a five-year project funded by the European Commission that aimed to improve the understanding of the long-term ionizing radiation (IR) risks for pediatric patients. In this paper, we provide a detailed overview of the rationale, design, and methods for the biological aspect of the project with objectives to provide a mechanistic understanding of the molecular pathways involved in the IR response and to identify potential predictive biomarkers of individual response involved in long-term health risks. Biological samples will be collected at three time points: before the first exposure, at the end of the exposure, and one year after the exposure. The average whole-body dose, the dose to the target organ, and the dose to some important out-of-field organs will be estimated. State-of-the-art analytical methods will be used to assess the levels of a set of known biomarkers and also explore high-resolution approaches of proteomics and miRNA transcriptomes to provide an integrated assessment. By using bioinformatics and systems biology, biological pathways and novel pathways involved in the response to IR exposure will be deciphered.
Asunto(s)
Cardiología , Protones , Niño , Humanos , Estudios Longitudinales , Dosis de Radiación , Fotones/uso terapéuticoRESUMEN
Nonalcoholic fatty liver disease (NAFLD) refers to excess fat accumulation in the liver. In animal experiments and human kinetic study, we found that administration of combined metabolic activators (CMAs) promotes the oxidation of fat, attenuates the resulting oxidative stress, activates mitochondria, and eventually removes excess fat from the liver. Here, we tested the safety and efficacy of CMA in NAFLD patients in a placebo-controlled 10-week study. We found that CMA significantly decreased hepatic steatosis and levels of aspartate aminotransferase, alanine aminotransferase, uric acid, and creatinine, whereas found no differences on these variables in the placebo group after adjustment for weight loss. By integrating clinical data with plasma metabolomics and inflammatory proteomics as well as oral and gut metagenomic data, we revealed the underlying molecular mechanisms associated with the reduced hepatic fat and inflammation in NAFLD patients and identified the key players involved in the host-microbiome interactions. In conclusion, we showed that CMA can be used to develop a pharmacological treatment strategy in NAFLD patients.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa , Humanos , Inflamación , Hígado , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Pérdida de PesoRESUMEN
OBJECTIVE: Endothelial cell (EC) dysfunction is a well-established response to cardiovascular disease risk factors, such as smoking and obesity. Risk factor exposure can modify EC signaling and behavior, leading to arterial and venous disease development. Here, we aimed to identify biomarker panels for the assessment of EC dysfunction, which could be useful for risk stratification or to monitor treatment response. Approach and Results: We used affinity proteomics to identify EC proteins circulating in plasma that were associated with cardiovascular disease risk factor exposure. Two hundred sixteen proteins, which we previously predicted to be EC-enriched across vascular beds, were measured in plasma samples (N=1005) from the population-based SCAPIS (Swedish Cardiopulmonary Bioimage Study) pilot. Thirty-eight of these proteins were associated with body mass index, total cholesterol, low-density lipoprotein, smoking, hypertension, or diabetes. Sex-specific analysis revealed that associations predominantly observed in female- or male-only samples were most frequently with the risk factors body mass index, or total cholesterol and smoking, respectively. We show a relationship between individual cardiovascular disease risk, calculated with the Framingham risk score, and the corresponding biomarker profiles. CONCLUSIONS: EC proteins in plasma could reflect vascular health status.
Asunto(s)
Enfermedades Cardiovasculares/sangre , Endotelio Vascular/metabolismo , Proteómica/métodos , Biomarcadores/sangre , Enfermedades Cardiovasculares/patología , Endotelio Vascular/patología , Femenino , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Masculino , Persona de Mediana EdadRESUMEN
The study of proteins circulating in blood offers tremendous opportunities to diagnose, stratify, or possibly prevent diseases. With recent technological advances and the urgent need to understand the effects of COVID-19, the proteomic analysis of blood-derived serum and plasma has become even more important for studying human biology and pathophysiology. Here we provide views and perspectives about technological developments and possible clinical applications that use mass-spectrometry(MS)- or affinity-based methods. We discuss examples where plasma proteomics contributed valuable insights into SARS-CoV-2 infections, aging, and hemostasis and the opportunities offered by combining proteomics with genetic data. As a contribution to the Human Proteome Organization (HUPO) Human Plasma Proteome Project (HPPP), we present the Human Plasma PeptideAtlas build 2021-07 that comprises 4395 canonical and 1482 additional nonredundant human proteins detected in 240 MS-based experiments. In addition, we report the new Human Extracellular Vesicle PeptideAtlas 2021-06, which comprises five studies and 2757 canonical proteins detected in extracellular vesicles circulating in blood, of which 74% (2047) are in common with the plasma PeptideAtlas. Our overview summarizes the recent advances, impactful applications, and ongoing challenges for translating plasma proteomics into utility for precision medicine.
Asunto(s)
Proteoma , Proteómica/tendencias , Envejecimiento/genética , COVID-19/genética , Bases de Datos de Proteínas , Hemostasis/genética , Humanos , Espectrometría de Masas , Proteoma/genéticaRESUMEN
Unfortunately, 'Present address' was omitted from one of the addresses provided for Mark I. McCarthy (#26).
RESUMEN
AMPA-type glutamate receptors (AMPARs), the key elements of fast excitatory neurotransmission in the brain, are receptor ion channels whose core is assembled from pore-forming and three distinct types of auxiliary subunits. While it is well established that this assembly occurs in the endoplasmic reticulum (ER), it has remained largely enigmatic how this receptor-building happens. Here we review recent findings on the biogenesis of AMPARs in native neurons as a multistep production line that is defined and operated by distinct ER-resident helper proteins, and we discuss how impairment of these operators by mutations or targeted gene-inactivation leads to severe phenotypes in both humans and rodents. We suggest that the recent data on AMPAR biogenesis provide new insights into a process that is key to the formation and operation of excitatory synapses and their activity-dependent dynamics, as well as for the operation of the mammalian brain under normal and pathological conditions.
Asunto(s)
Ácido Glutámico , Receptores AMPA , Retículo Endoplásmico/metabolismo , Receptores AMPA/metabolismo , Transmisión Sináptica , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol PropiónicoRESUMEN
BACKGROUND: Protein profiles that can predict allergy development in children are lacking and the ideal sampling age is unknown. By applying an exploratory proteomics approach in the prospective FARMFLORA birth cohort, we sought to identify previously unknown circulating proteins in early life that associate to protection or risk for development of allergy up to 8 years of age. METHODS: We analyzed plasma prepared from umbilical cord blood (n = 38) and blood collected at 1 month (n = 42), 4 months (n = 39), 18 months (n = 42), 36 months (n = 42) and 8 years (n = 44) of age. We profiled 230 proteins with a multiplexed assay and evaluated the global structure of the data with principal component analysis (PCA). Protein profiles informative to allergic disease at 18 months, 36 months and/or 8 years were evaluated using Lasso logistic regression and random forest. RESULTS: Two clusters emerged in the PCA analysis that separated samples obtained at birth and at 1 month of age from samples obtained later. Differences between the clusters were mostly driven by abundant plasma proteins. For the prediction of allergy, both Lasso logistic regression and random forest were most informative with samples collected at 1 month of age. A Lasso model with 27 proteins together with farm environment differentiated children who remained healthy from those developing allergy. This protein panel was primarily composed of antigen-presenting MHC class I molecules, interleukins and chemokines. CONCLUSION: Sampled at one month of age, circulating proteins that reflect processes of the immune system may predict the development of allergic disease later in childhood.
RESUMEN
The localization of proteins at a tissue- or cell-type-specific level is tightly linked to the protein function. To better understand each protein's role in cellular systems, spatial information constitutes an important complement to quantitative data. The standard methods for determining the spatial distribution of proteins in single cells of complex tissue samples make use of antibodies. For a stringent analysis of the human proteome, we used orthogonal methods and independent antibodies to validate 5981 antibodies that show the expression of 3775 human proteins across all major human tissues. This enhanced validation uncovered 56 proteins corresponding to the group of "missing proteins" and 171 proteins of unknown function. The presented strategy will facilitate further discussions around criteria for evidence of protein existence based on immunohistochemistry and serves as a useful guide to identify candidate proteins for integrative studies with quantitative proteomics methods.
Asunto(s)
Proteoma , Proteómica , Anticuerpos , Humanos , InmunohistoquímicaRESUMEN
AIMS/HYPOTHESIS: It is well established that physical activity, abdominal ectopic fat and glycaemic regulation are related but the underlying structure of these relationships is unclear. The previously proposed twin-cycle hypothesis (TC) provides a mechanistic basis for impairment in glycaemic control through the interactions of substrate availability, substrate metabolism and abdominal ectopic fat accumulation. Here, we hypothesise that the effect of physical activity in glucose regulation is mediated by the twin-cycle. We aimed to examine this notion in the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) Consortium cohorts comprised of participants with normal or impaired glucose regulation (cohort 1: N ≤ 920) or with recently diagnosed type 2 diabetes (cohort 2: N ≤ 435). METHODS: We defined a structural equation model that describes the TC and fitted this within the IMI DIRECT dataset. A second model, twin-cycle plus physical activity (TC-PA), to assess the extent to which the effects of physical activity in glycaemic regulation are mediated by components in the twin-cycle, was also fitted. Beta cell function, insulin sensitivity and glycaemic control were modelled from frequently sampled 75 g OGTTs (fsOGTTs) and mixed-meal tolerance tests (MMTTs) in participants without and with diabetes, respectively. Abdominal fat distribution was assessed using MRI, and physical activity through wrist-worn triaxial accelerometry. Results are presented as standardised beta coefficients, SE and p values, respectively. RESULTS: The TC and TC-PA models showed better fit than null models (TC: χ2 = 242, p = 0.004 and χ2 = 63, p = 0.001 in cohort 1 and 2, respectively; TC-PA: χ2 = 180, p = 0.041 and χ2 = 60, p = 0.008 in cohort 1 and 2, respectively). The association of physical activity with glycaemic control was primarily mediated by variables in the liver fat cycle. CONCLUSIONS/INTERPRETATION: These analyses partially support the mechanisms proposed in the twin-cycle model and highlight mechanistic pathways through which insulin sensitivity and liver fat mediate the association between physical activity and glycaemic control.
Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Homeostasis/fisiología , Anciano , Glucemia/metabolismo , Estudios de Cohortes , Estudios Transversales , Dinamarca/epidemiología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/terapia , Femenino , Finlandia/epidemiología , Prueba de Tolerancia a la Glucosa , Control Glucémico , Humanos , Resistencia a la Insulina , Masculino , Persona de Mediana Edad , Países Bajos/epidemiología , Suecia/epidemiologíaRESUMEN
Establishment, specification, and validation of synaptic connections are thought to be mediated by interactions between pre- and postsynaptic cell-adhesion molecules. Arguably, the best-characterized transsynaptic interactions are formed by presynaptic neurexins, which bind to diverse postsynaptic ligands. In a proteomic screen of neurexin-1 (Nrxn1) complexes immunoisolated from mouse brain, we identified carbonic anhydrase-related proteins CA10 and CA11, two homologous, secreted glycoproteins of unknown function that are predominantly expressed in brain. We found that CA10 directly binds in a cis configuration to a conserved membrane-proximal, extracellular sequence of α- and ß-neurexins. The CA10-neurexin complex is stable and stoichiometric, and results in formation of intermolecular disulfide bonds between conserved cysteine residues in neurexins and CA10. CA10 promotes surface expression of α- and ß-neurexins, suggesting that CA10 may form a complex with neurexins in the secretory pathway that facilitates surface transport of neurexins. Moreover, we observed that the Nrxn1 gene expresses from an internal 3' promoter a third isoform, Nrxn1γ, that lacks all Nrxn1 extracellular domains except for the membrane-proximal sequences and that also tightly binds to CA10. Our data expand the understanding of neurexin-based transsynaptic interaction networks by providing further insight into the interactions nucleated by neurexins at the synapse.