Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38822829

RESUMEN

Whilst the contribution of peripheral and central inflammation to neurodegeneration in Parkinson's disease and the role of the immune response in this disorder are well known, the effects of the anti-inflammatory response on the disease have not been described in depth. This study is aimed to assess the changes in the regulatory/inflammatory immune response in recently diagnosed, untreated PD patients and a year after. Twenty-one PD patients and 19 healthy controls were included and followed-up for 1 year. The levels of immunoregulatory cells (CD4+ Tregs, Bregs, and CD8+ Tregs); classical, nonclassical, and intermediate monocytes, and proinflammatory cells (Th1, Th2, and Th17) were measured by flow cytometry. Cytokine levels were determined by ELISA. Clinical follow-up was based on the Hoehn & Yahr and UDPRS scales. Our results indicate that the regulatory response in PD patients on follow-up was characterized by increased levels of active Tregs, functional Tregs, TR1, IL-10-producing functional Bregs, and IL-10-producing classical monocytes, along with decreased counts of Bregs and plasma cells. With respect to the proinflammatory immune response, peripheral levels of Th1 IFN-γ+ cells were decreased in treated PD patients, whilst the levels of CD4+ TBET+ cells, HLA-DR+ intermediate monocytes, IL-6, and IL-4 were increased after a 1-year follow-up. Our main finding was an increased regulatory T cell response after a 1-year follow-up and its link with clinical improvement in PD patients. In conclusion, after a 1-year follow-up, PD patients exhibited increased levels of regulatory populations, which correlated with clinical improvement. However, a persistent inflammatory environment and active immune response were observed.

2.
Appl Microbiol Biotechnol ; 108(1): 179, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280035

RESUMEN

Several COVID-19 vaccines use adenovirus vectors to deliver the SARS-CoV-2 spike (S) protein. Immunization with these vaccines promotes immunity against the S protein, but against also the adenovirus itself. This could interfere with the entry of the vaccine into the cell, reducing its efficacy. Herein, we evaluate the efficiency of an adenovirus-vectored vaccine (chimpanzee ChAdOx1 adenovirus, AZD1222) in boosting the specific immunity compared to that induced by a recombinant receptor-binding domain (RBD)-based vaccine without viral vector. Mice immunized with the AZD1222 human vaccine were given a booster 6 months later, with either the homologous vaccine or a recombinant vaccine based on RBD of the delta variant, which was prevalent at the start of this study. A significant increase in anti-RBD antibody levels was observed in rRBD-boosted mice (31-61%) compared to those receiving two doses of AZD1222 (0%). Significantly higher rates of PepMix™- or RBD-elicited proliferation were also observed in IFNγ-producing CD4 and CD8 cells from mice boosted with one or two doses of RBD, respectively. The lower efficiency of the ChAdOx1-S vaccine in boosting specific immunity could be the result of a pre-existing anti-vector immunity, induced by increased levels of anti-adenovirus antibodies found both in mice and humans. Taken together, these results point to the importance of avoiding the recurrent use of the same adenovirus vector in individuals with immunity and memory against them. It also illustrates the disadvantages of ChAdOx1 adenovirus-vectored vaccine with respect to recombinant protein vaccines, which can be used without restriction in vaccine-booster programs. KEY POINTS: • ChAdOx1 adenovirus vaccine (AZD1222) may not be effective in boosting anti-SARS-CoV-2 immunity • A recombinant RBD protein vaccine is effective in boosting anti-SARS-CoV-2 immunity in mice • Antibodies elicited by the rRBD-delta vaccine persisted for up to 3 months in mice.


Asunto(s)
Vacunas contra el Adenovirus , COVID-19 , Vacunas , Humanos , Animales , Ratones , Pan troglodytes , ChAdOx1 nCoV-19 , Vacunas contra la COVID-19/genética , SARS-CoV-2 , COVID-19/prevención & control , Adenoviridae/genética , Vacunación , Anticuerpos Antivirales , Anticuerpos Neutralizantes
3.
Infect Immun ; 91(7): e0051722, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37341599

RESUMEN

Parasitic diseases are a major public health problem worldwide. Plant-derived products appear to be ideal candidates from a biotechnological perspective, being sustainable and environmentally friendly. The antiparasitic properties of Carica papaya have been attributed to some of its components, including papain and other compounds that are concentrated in the latex and seeds. This study demonstrated in vitro a high and insignificantly different cysticidal activity of soluble extract that was obtained after the disruption of nontransformed wild-type (WT) cells as well as transformed papaya calluses (PC-9, PC-12, and PC-23) and papaya cell suspensions (CS-9, CS-12, and CS-23). In vivo, cell suspensions of CS-WT and CS-23 that had been previously lyophilized were tested with respect to their cysticidal effects, compared with those of three commercial antiparasitic drugs. CS-WT and CS-23 together reduced the number of cysticerci, the number of buds, and the percentage of calcified cysticerci in a similar extent to albendazole and niclosamide, whereas ivermectin was less effective. Mice were then orally immunized with CS-23 that expressed the anti-cysticercal KETc7 antigen (10 µg/mouse), CS-WT (10 mg/mouse), or both together to evaluate their preventive properties. CS-23 and CS-WT significantly reduced the expected parasite and increased the percentage of calcified cysticerci as well as recovery, being more effective when employed together. The results reported in this study support the feasibility of the development of an anti-cysticercosis vaccine from cells of C. papaya in in vitro cultures, as they are a source of an anthelmintic, natural, and reproducible product.


Asunto(s)
Carica , Ratones , Animales , Suspensiones , Albendazol , Extractos Vegetales/farmacología , Semillas
4.
Cancer Immunol Immunother ; 72(11): 3825-3838, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37736849

RESUMEN

Breast cancer is the leading malignancy in women worldwide, both in terms of incidence and mortality. Triple-negative breast cancer (TNBC) is the type with the worst clinical outcomes and with fewer therapeutic options than other types of breast cancer. GK-1 is a peptide that in the experimental model of the metastatic 4T1 breast cancer has demonstrated anti-tumor and anti-metastatic properties. Herein, GK-1 (5 mg/kg, i.v.) weekly administrated not only decreases tumor growth and the number of lung macro-metastases but also lung and lymph nodes micro-metastases. Histological analysis reveals that GK-1 reduced 57% of the intra-tumor vascular areas, diminished the leukemoid reaction's progression, and the spleens' weight and length. A significant reduction in VEGF-C, SDF-1, angiopoietin-2, and endothelin-1 angiogenic factors was induced. Moreover, GK-1 prevents T cell exhaustion in the tumor-infiltrating lymphocytes (TILs) decreasing PD-1 expression. It also increased IFN-γ and granzyme-B expression and the cytotoxic activity of CD8+ TILs cells against tumor cells. All these features were found to be associated with a better antitumor response and prognosis. Altogether, these results reinforce the potential of GK-1 to improve the clinical outcome of triple-negative breast cancer immunotherapy. Translation research is ongoing towards its evaluation in humans.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Animales , Ratones , Neoplasias de la Mama Triple Negativas/patología , Agotamiento de Células T , Linfocitos Infiltrantes de Tumor/metabolismo , Pronóstico , Antineoplásicos/uso terapéutico , Linfocitos T CD8-positivos/metabolismo
5.
Exp Parasitol ; 250: 108529, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37015309

RESUMEN

Neurocysticercosis, caused by the larval stage of Taenia solium, is a life-threatening condition and the most severe form of the disease. Yet, despite being a required link in the parasite life cycle, tapeworm carriers are rarely reported. This study is aimed to find and evaluate T. solium carriers, describing some characteristics of these patients and the treatment. Taeniasis cases were searched for in various Mexican states from 1983 to 2016. Previous informed consent, tapeworm-carrier patients were administered with niclosamide and a saline purge. Parasite specimens were recovered and identified, both morphologically and by PCR. From 117 treated patients, Taenia sp. specimens were obtained from 46 subjects (47.8%). From these, complete parasites were recovered from 42 (90.5%), and only detached proglottids from 4 patients. Cases were more frequent in Morelos, Chiapas, and Guerrero. More than one adult cestode was recovered from 4 patients (9.5%). To improve treatment efficacy and adherence, the drug was administered in late afternoon, resulting a high recovery yield of complete parasites (90.5%). The success rate of deworming campaigns in areas of Mexico and the world that are endemic for Taenia sp. could be improved by administering the treatment at times that do not interfere with the patients' daily activities, and national health authorities could apply this simple strategy to help eradication efforts in endemic areas. The detection of carriers will only be possible through the coordinated efforts of public and private health services, a better education of the general population to improve self-detection, and adequate, personalized diagnostic procedures for suspect cases.


Asunto(s)
Infecciones por Cestodos , Cisticercosis , Neurocisticercosis , Taenia solium , Teniasis , Adulto , Animales , Humanos , Heces/parasitología , Teniasis/diagnóstico , Teniasis/tratamiento farmacológico , Teniasis/epidemiología , Neurocisticercosis/diagnóstico , Neurocisticercosis/tratamiento farmacológico , Neurocisticercosis/epidemiología , Taenia solium/genética , Cisticercosis/diagnóstico
6.
Parasitol Res ; 122(9): 2147-2154, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37428312

RESUMEN

Neurocysticercosis is a heterogeneous disease, and the patient's sex seems to play a role in this heterogeneity. Hosts' sexual dimorphism in cysticercosis has been largely explored in the murine model of intraperitoneal Taenia crassiceps cysticercosis. In this study, we investigated the sexual dimorphism of inflammatory responses in a rat model of extraparenchymal neurocysticercosis caused by T. crassiceps. T. crassiceps cysticerci were inoculated in the subarachnoid space of Wistar rats (25 females, 22 males). Ninety days later, the rats were euthanized for histologic, immunohistochemistry, and cytokines studies. Ten animals also underwent a 7-T magnetic resonance imaging (MRI). Female rats presented a higher concentration of immune cells in the arachnoid-brain interface, reactive astrogliosis in the periventricular region, in situ pro-inflammatory cytokine (interleukin [IL]-6) and anti-inflammatory cytokine (IL-10), and more intense hydrocephalus on MRI than males. Intracranial hypertension signals were not observed during the observational period. Overall, these results suggest sexual dimorphism in the intracranial inflammatory response that accompanied T. crassiceps extraparenchymal neurocysticercosis.


Asunto(s)
Cisticercosis , Neurocisticercosis , Taenia , Masculino , Ratones , Femenino , Ratas , Animales , Neurocisticercosis/diagnóstico por imagen , Neurocisticercosis/patología , Modelos Animales de Enfermedad , Caracteres Sexuales , Ratas Wistar , Citocinas , Interleucina-6 , Ratones Endogámicos BALB C
7.
Phytother Res ; 37(8): 3394-3407, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37012651

RESUMEN

Triple-negative breast cancer (TNBC) does not express estrogen receptor, progesterone receptor, and human epidermal growth factor receptor; therefore, TNBC lacks targeted therapy, and chemotherapy is the only available treatment for this illness but causes side effects. A putative strategy for the treatment of TNBC could be the use of the polyphenols such as α-Mangostin (α-M), which has shown anticancerogenic effects in different cancer models and can modulate the inflammatory and prooxidant state in several pathological models. The redox state, oxidative stress (OS), and oxidative damage are highly related to cancer development and its treatment. Thus, this study aimed to evaluate the effects of α-M on redox state, mitochondrial metabolism, and apoptosis in 4T1 mammary carcinoma cells. We found that α-M decreases both protein levels and enzymatic activity of catalase, and increases reactive oxygen species, oxidized proteins and glutathione disulfide, which demonstrates that α-M induces oxidative damage. We also found that α-M promotes mitochondrial dysfunction by abating basal respiration, the respiration ligated to oxidative phosphorylation (OXPHOS), and the rate control of whole 4T1 cells. Additionally, α-M also decreases the levels of OXPHOS subunits of mitochondrial complexes I, II, III, and adenosine triphosphate synthase, the activity of mitochondrial complex I as well as the levels of peroxisome proliferator-activated receptor-gamma co-activator 1α, showing a mitochondrial mass reduction. Then, oxidative damage and mitochondrial dysfunction induced by α-M induce apoptosis of 4T1 cells, which is evidenced by B cell lymphoma 2 decrease and caspase 3 cleavage. Taken together, our results suggest that α-M induces OS and mitochondrial dysfunction, resulting in 4T1 cell death through apoptotic mechanisms.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Mitocondrias
8.
Arch Biochem Biophys ; 730: 109414, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36174750

RESUMEN

Cancer, a major public health problem, is the fourth cause of death in the world. While cancer mortality has decreased in recent decades due to more effective treatments, mostly based on improving antitumor immunity, some forms of cancer are resistant to these immunotherapies. A promising approach for cancer treatment involves the administration of antitumor and immunomodulatory peptides. Immunomodulatory peptides have been proved to exert antitumor and immunomodulatory effects by activating immune cells such as cytotoxic T cells, with fewer side-effects. A process closely related to the regulation of the immune system by immunomodulatory antitumor peptides is the modulation of the redox state, which has been poorly studied. This review focuses on the redox state regulated by antitumor and immunomodulatory peptides in cancer development, and on the potential of redox state as a therapy associated with these peptides in cancer treatment.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Linfocitos T Citotóxicos , Péptidos/uso terapéutico , Oxidación-Reducción
9.
Clin Immunol ; 212: 108240, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31299381

RESUMEN

CD8 T cells can kill malignant cells in an antigen-specific manner. However, anti-tumoral responses are usually limited by suppressive factors that curb the effector responses of tumor-infiltrating CD8 T cells. Therapeutic strategies to overcome intra-tumoral T cell suppression, for example immune checkpoint inhibition, have been clinically effective in patients with cancer. Here, we provide data that demonstrates that GK-1, a peptide derived from the parasite Taenia crassiceps, promotes an anti-melanoma CD8 T cell response with heightened effector characteristics that leads to an increased amount of tumor-infiltrating CD44+ IFN-γ-producing CD8 T cells. The response induced by GK-1 was associated with a reduction in the expression of PD-1 and PD-L1 on tumor-infiltrating CD8 and dendritic cells, respectively, effects that led to a dramatic decrease in tumor burden. Our results suggest that the immunomodulatory properties of GK-1 may promote a CD8 T cell response that may be therapeutically useful in the setting of cancer.


Asunto(s)
Antígeno B7-H1/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Melanoma Experimental/inmunología , Péptidos Cíclicos/farmacología , Receptor de Muerte Celular Programada 1/efectos de los fármacos , Neoplasias Cutáneas/inmunología , Microambiente Tumoral/efectos de los fármacos , Traslado Adoptivo , Animales , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Regulación hacia Abajo , Receptores de Hialuranos/inmunología , Interferón gamma/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T/trasplante , Taenia , Microambiente Tumoral/inmunología
10.
Parasitol Res ; 119(8): 2521-2529, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32591864

RESUMEN

The enzyme-linked immunoelectrotransfer blot (EITB) assay to detect antibodies in serum is a complementary tool for the diagnosis of neurocysticercosis (NCC). Presence of at least one glycoprotein band corresponding to a Taenia solium (T. solium) antigen indicates a positive result; however, EITB assays have multiple glycoprotein bands, and previous work has suggested that band patterns may have additional diagnostic value. We included 58 participants with a definitive diagnosis of NCC who received care at the Instituto Nacional de Neurología y Neurocirugía in Mexico City. Three different EITB tests were applied to participants' serum samples (LDBio, France; US Centers for Disease Control and Prevention [CDC]; and Instituto de Diagnóstico y Referencia Epidemiológicos [InDRE]). There was substantial variability in specific glycoprotein band patterns among the three assays. However, in age- and sex-adjusted logistic regression models, the number of glycoprotein bands was positively associated with the presence of vesicular extraparenchymal cysts (InDRE adjusted odds ratio [aOR] 1.60 p < 0.001; CDC aOR 6.31 p < 0.001; LDBio aOR 2.45 p < 0.001) and negatively associated with the presence of calcified parenchymal cysts (InDRE aOR 0.63 p < 0.001; CDC aOR 0.25 p < 0.001; LDBio aOR 0.44 p < 0.001). In a sensitivity analysis also adjusting for cyst count, results were similar. In all three EITB serum antibody tests, the number of glycoprotein bands consistently predicted cyst stage and location, although magnitude of effect differed.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Glicoproteínas/análisis , Proteínas del Helminto/análisis , Neurocisticercosis/diagnóstico , Taenia solium/aislamiento & purificación , Animales , Anticuerpos Antihelmínticos/análisis , Antígenos Helmínticos/análisis , Antígenos Helmínticos/inmunología , Femenino , Francia , Glicoproteínas/inmunología , Proteínas del Helminto/inmunología , Humanos , Masculino , México , Neurocisticercosis/parasitología , Oportunidad Relativa , Sensibilidad y Especificidad , Taenia solium/crecimiento & desarrollo , Taenia solium/inmunología
11.
Infect Immun ; 87(12)2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31570557

RESUMEN

Neurocysticercosis is caused by the establishment of Taenia solium cysts in the central nervous system. Murine cysticercosis by Taenia crassiceps is a useful model of cysticercosis in which the complement component 5 (C5) has been linked to infection resistance/permissiveness. This work aimed to study the possible relevance for human neurocysticercosis of single nucleotide polymorphisms (SNPs) in the C5-TRAF1 region (rs17611 C/T, rs992670 G/A, rs25681 G/A, rs10818488 A/G, and rs3761847 G/A) in a Mexican population and associated with clinical and radiological traits related to neurocysticercosis severity (cell count in the cerebrospinal fluid [CSF cellularity], parasite location and parasite load in the brain, parasite degenerating stage, and epilepsy). The AG genotype of the rs3761847 SNP showed a tendency to associate with multiple brain parasites, while the CT and GG genotypes of the rs17611 and rs3761847 SNPs, respectively, showed a tendency to associate with low CSF cellularity. The rs3761847 SNP was associated with epilepsy under a dominant model, whereas rs10818488 was associated with CSF cellularity and parasite load under dominant and recessive models, respectively. For haplotypes, C5- and the TRAF1-associated SNPs were, respectively, in strong linkage disequilibrium with each other; thus, these haplotypes were studied independently. For C5 SNPs, carrying the CAA haplotype increases the risk of showing high CSF cellularity 3-fold and the risk of having extraparenchymal parasites 4-fold, two conditions that are related to severe disease. For TRAF1 SNPs, the GA and AG haplotypes were associated with CSF cellularity, and the AG haplotype was associated with epilepsy. Overall, these findings support the clear participation of C5 and TRAF1 in the risk of developing severe neurocysticercosis in the Mexican population.


Asunto(s)
Complemento C5/genética , Epilepsia/parasitología , Predisposición Genética a la Enfermedad/genética , Neurocisticercosis/genética , Factor 1 Asociado a Receptor de TNF/genética , Adolescente , Adulto , Anciano , Animales , Encéfalo/parasitología , Líquido Cefalorraquídeo/parasitología , Epilepsia/genética , Femenino , Haplotipos/genética , Humanos , Masculino , México , Persona de Mediana Edad , Neurocisticercosis/parasitología , Carga de Parásitos , Polimorfismo de Nucleótido Simple/genética , Taenia solium/patogenicidad , Adulto Joven
12.
J Neuroinflammation ; 16(1): 212, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31711508

RESUMEN

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. Various studies have suggested that the immune response plays a key role in this pathology. While a predominantly pro-inflammatory peripheral immune response has been reported in treated and untreated PD patients, the study of the role of the regulatory immune response has been restricted to regulatory T cells. Other immune suppressive populations have been described recently, but their role in PD is still unknown. This study was designed to analyze the pro and anti-inflammatory immune response in untreated PD patients, with emphasis on the regulatory response. METHODS: Thirty-two PD untreated patients and 20 healthy individuals were included in this study. Peripheral regulatory cells (CD4+Tregs, Bregs, CD8+Tregs, and tolerogenic dendritic cells), pro-inflammatory cells (Th1, Th2, and Th17 cells; active dendritic cells), and classical, intermediate, and non-classical monocytes were characterized by flow cytometry. Plasmatic levels of TNF-α, IFN-γ, IL-6, GM-CSF, IL-12p70, IL-4, IL-13, IL-17α, IL-1ß, IL-10, TGF-ß, and IL-35 were determined by ELISA. RESULTS: Decreased levels of suppressor Tregs, active Tregs, Tr1 cells, IL-10-producer CD8regs, and tolerogenic PD-L1+ dendritic cells were observed. With respect to the pro-inflammatory response, a decrease in IL-17-α and an increase in IL-13 levels were observed. CONCLUSION: A decrease in the levels of regulatory cell subpopulations in untreated PD patients is reported for the first time in this work. These results suggest that PD patients may exhibit a deficient suppression of the pro-inflammatory response, which could contribute to the pathophysiology of the disease.


Asunto(s)
Linfocitos B Reguladores/inmunología , Células Dendríticas/inmunología , Enfermedad de Parkinson/sangre , Linfocitos T Reguladores/inmunología , Anciano , Citocinas/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/inmunología
13.
Neuroimmunomodulation ; 26(3): 159-166, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31311029

RESUMEN

OBJECTIVE: Parkinson's disease (PD) patients are usually treated with L-dopa and/or dopaminergic agonists, which act by binding five types of dopaminergic receptors (DRD1-DRD5). Peripheral immune cells are known to express dopamine receptors on their membrane surface, and therefore they could be directly affected by the treatment. Regulatory cells are the main modulators of inflammation, but it is not clear whether dopaminergic treatment could affect their functions. While only regulatory T cells (Tregs) have been proved to express dopamine receptors, it is not known whether other regulatory cells such as CD8regs, regulatory B cells (Bregs), tolerogenic dendritic cells, and intermediate monocytes also express them. METHODS: The expression of dopamine receptors in Tregs, CD8regs, Bregs, tolerogenic dendritic cells, and intermediate monocytes was herein evaluated. cDNA from 11 PD patients and 9 control subjects was obtained and analyzed. RESULTS: All regulatory cell populations expressed the genes coding for dopamine receptors, and this expression was further corroborated by flow cytometry. These findings may allow us to propose regulatory populations as possible targets for PD treatment. CONCLUSIONS: This study opens new paths to deepen our understanding on the effect of PD treatment on the cells of the regulatory immune response.


Asunto(s)
Linfocitos B Reguladores/metabolismo , Linfocitos T CD8-positivos/metabolismo , Células Dendríticas/metabolismo , Monocitos/metabolismo , Enfermedad de Parkinson/metabolismo , Receptores Dopaminérgicos/metabolismo , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/inmunología
14.
Nature ; 496(7443): 57-63, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23485966

RESUMEN

Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.


Asunto(s)
Adaptación Fisiológica/genética , Cestodos/genética , Genoma de los Helmintos/genética , Parásitos/genética , Animales , Evolución Biológica , Cestodos/efectos de los fármacos , Cestodos/fisiología , Infecciones por Cestodos/tratamiento farmacológico , Infecciones por Cestodos/metabolismo , Secuencia Conservada/genética , Echinococcus granulosus/genética , Echinococcus multilocularis/efectos de los fármacos , Echinococcus multilocularis/genética , Echinococcus multilocularis/metabolismo , Genes de Helminto/genética , Genes Homeobox/genética , Proteínas HSP70 de Choque Térmico/genética , Humanos , Hymenolepis/genética , Redes y Vías Metabólicas/genética , Terapia Molecular Dirigida , Parásitos/efectos de los fármacos , Parásitos/fisiología , Proteoma/genética , Células Madre/citología , Células Madre/metabolismo , Taenia solium/genética
15.
Parasitol Res ; 118(10): 2891-2899, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31418112

RESUMEN

Immunodiagnosis has a supportive role in the diagnosis of neurocysticercosis (NCC). The aim of this study was to compare the validity of seven immunodiagnostic tests among serum samples from 58 patients with NCC, 26 patients with neurological diseases other than NCC, and 15 healthy controls. One test for viable parasite detection (HP10 antigen assay) and six for antibody detection were evaluated. For the entire sample, sensitivities ranged from 55.2% (NOVALISA) to 81.0% (enzyme-linked immunosorbent assay [ELISA] Taenia solium antibody), with the sensitivity of the latter test significantly higher than that of the in-house ELISA Taenia crassiceps, NOVALISA, enzyme-linked immunoelectrotransfer blot (EITB) CDC, and HP10. Overall, specificities were high, ranging from 85.4% (ELISA Ts) to 97.1% (NOVALISA), with no statistically significant differences. Detection of HP10 antigen was significantly associated with the presence of vesicular parasites. The simple and low-cost ELISA Taenia solium antibody Ab instead of EITB is recommended to support NCC diagnosis in both rural and hospital settings in Mexico.


Asunto(s)
Anticuerpos Antihelmínticos/sangre , Antígenos Helmínticos/inmunología , Pruebas Diagnósticas de Rutina/métodos , Neurocisticercosis/diagnóstico , Taenia solium/inmunología , Adulto , Animales , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Humanos , Pruebas Inmunológicas/métodos , Masculino , México , Neurocisticercosis/inmunología , Población Rural , Sensibilidad y Especificidad
16.
Immunopharmacol Immunotoxicol ; 41(1): 140-149, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30714433

RESUMEN

Context: Influenza is a severe, life-threatening viral disease that can be prevented by vaccination. However, the anti-influenza human vaccine failed to show the required efficacy both in infants under 5 years old and in the elder population, who are among those with the highest risk of developing severe complications after influenza infection. Therefore, it is of high importance to improve the vaccine efficacy and ensure its safety in these susceptible populations. GK-1, a novel 18-aa peptide adjuvant, has been proved to increase the immunogenicity of the human influenza vaccine in both young and aged mice. Objective: A preclinical study of the toxicity profile of GK-1 following the World Health Organization guidelines to support its use was herein conducted. Material and methods: GK-1 was synthetically produced following Good Manufacturing Practices. The toxicological evaluation of GK-1 peptide was performed in rats after repeated dose-ranging trials by the subcutaneous route. The mutagenic potential of GK-1 was assessed by the micronucleus, chromosomal aberration, and Ames tests, in accordance with OECD Guidelines. Results: GK-1 did not show toxic effects at doses up to 12.5mg/kg, corresponding to 25 times the dose intended for human use. No indications of mutagenic potential were observed. GK-1 after dermal administration was well tolerated locally. Conclusion: The efficacy of GK-1 to improve influenza vaccine protection, along with the absence of toxicity and mutagenicity, as reported herein, support the evaluation of this peptide in a clinical trial as a novel adjuvant for human use.


Asunto(s)
Adyuvantes Inmunológicos/toxicidad , Aberraciones Cromosómicas/efectos de los fármacos , Daño del ADN , Vacunas contra la Influenza/inmunología , Péptidos Cíclicos/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Gripe Humana/prevención & control , Inyecciones Subcutáneas , Masculino , Pruebas de Mutagenicidad , Péptidos Cíclicos/inmunología , Ratas Wistar , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Pruebas de Toxicidad Crónica
17.
Neuroimmunomodulation ; 25(2): 103-109, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30041237

RESUMEN

OBJECTIVE: The aim of this study is to analyze the immune-endocrine profile in neurocysticercosis (NC) patients resistant to cysticidal treatment. METHODS: The inflammatory and regulatory responses of 8 resistant NC patients with extraparenchymal parasites and 5 healthy controls were evaluated through flow cytometry. Serum interleukin levels were measured by ELISA and catecholamines levels by high performance liquid chromatography. RESULTS: Higher percentages of Tr1, CD4+CD25+FOXP3+CD127- and CD4+CD45RO+FOXP3HI were found in NC patients compared with healthy controls, but no difference was found in catecholamine levels. Antigen-specific proliferative immune response was observed in NC patients. Neither anti-inflammatory nor pro-inflammatory cytokines showed differences between patients and controls, but IL-6 levels were lower in treatment-resistant NC patients. In addition, TGFß showed a significant negative correlation with dopamine. CONCLUSIONS: Altogether, these results may point to a modulation of the neuroinflammation in these patients that could indirectly favor cysticercal survival in CNS microenvironment.


Asunto(s)
Antiparasitarios/uso terapéutico , Inmunidad Celular/inmunología , Mediadores de Inflamación/sangre , Mediadores de Inflamación/inmunología , Neurocisticercosis/sangre , Neurocisticercosis/inmunología , Adulto , Anciano , Antiparasitarios/farmacología , Biomarcadores/sangre , Catecolaminas/sangre , Catecolaminas/inmunología , Femenino , Humanos , Inmunidad Celular/efectos de los fármacos , Masculino , Persona de Mediana Edad , Neurocisticercosis/tratamiento farmacológico , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Resultado del Tratamiento
18.
Parasitol Res ; 117(8): 2543-2553, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29876861

RESUMEN

Taeniasis-cysticercosis, a zoonosis caused by Taenia solium, is prevalent in underdeveloped countries, where marginalization promotes its continued transmission. Pig cysticercosis, an essential stage for transmission, is preventable by vaccination. An efficient multiepitope vaccine against pig cysticercosis, S3Pvac, was developed. Previous studies showed that antibodies against one of the S3Pvac components, GK-1, are capable of damaging T. solium cysticerci, inhibiting their ability to transform into the adult stage in golden hamster gut. This study is aimed to evaluate one of the mechanisms that could mediate anti-GK-1 antibody-dependent protection. To this end, pig anti-GK-1 antibodies were produced and purified by using protein A. Proteomic analysis showed that the induced antibodies recognized the respective native cysticercal protein KE7 (Bobes et al. Infect Immun 85:e00395-17, 2017) and two additional T. solium proteins (endophilin B1 and Gp50). A new procedure to evaluate cysticercus viability, based on quantifying the cytochrome c released after parasite damage, was developed. Taenia crassiceps cysticerci were cultured in the presence of differing amounts of anti-GK-1 antibody and complement in a saturating concentration, along with the respective controls. Cysticercus viability was assessed by recording parasite motility, trypan blue exclusion, and cytochrome c levels in cysticercal soluble extract. Anti-GK-1 antibody significantly increased cysticercus damage as measured by all three methods. Parasite evaluation by electron microscopy after treatment with anti-GK-1 antibody plus complement demonstrated cysticercus damage as shorter, capsule-severed microtrichia; a decrease in glycocalyx length with respect to untreated cysts; and disaggregated desmosomes. These results demonstrate that anti-GK-1 antibodies damage cysticerci through classic complement activation.


Asunto(s)
Anticuerpos Antihelmínticos/inmunología , Activación de Complemento , Taenia/inmunología , Animales , Antígenos Helmínticos/inmunología , Cricetinae , Cisticercosis , Femenino , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Proteómica , Porcinos , Teniasis/inmunología
19.
Infect Immun ; 85(12)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28923896

RESUMEN

Taenia solium cysticercosis, a parasitic disease that affects human health in various regions of the world, is preventable by vaccination. Both the 97-amino-acid-long KETc7 peptide and its carboxyl-terminal, 18-amino-acid-long sequence (GK-1) are found in Taenia crassiceps Both peptides have proven protective capacity against cysticercosis and are part of the highly conserved, cestode-native, 264-amino-acid long protein KE7. KE7 belongs to a ubiquitously distributed family of proteins associated with membrane processes and may participate in several vital cell pathways. The aim of this study was to identify the T. solium KE7 (TsKE7) full-length protein and to determine its immunogenic properties. Recombinant TsKE7 (rTsKE7) was expressed in Escherichia coli Rosetta2 cells and used to obtain mouse polyclonal antibodies. Anti-rTsKE7 antibodies detected the expected native protein among the 350 spots developed from T. solium cyst vesicular fluid in a mass spectrometry-coupled immune proteomic analysis. These antibodies were then used to screen a phage-displayed 7-random-peptide library to map B-cell epitopes. The recognized phages displayed 9 peptides, with the consensus motif Y(F/Y)PS sequence, which includes YYYPS (named GK-1M, for being a GK-1 mimotope), exactly matching a part of GK-1. GK-1M was recognized by 58% of serum samples from cysticercotic pigs with 100% specificity but induced weak protection against murine cysticercosis. In silico analysis revealed a universal T-cell epitope(s) in native TsKE7 potentially capable of stimulating cytotoxic T lymphocytes and helper T lymphocytes under different major histocompatibility complex class I and class II mouse haplotypes. Altogether, these results provide a rationale for the efficacy of the KETc7, rTsKE7, and GK-1 peptides as vaccines.


Asunto(s)
Antígenos Helmínticos/inmunología , Taenia solium/inmunología , Animales , Anticuerpos Antihelmínticos/sangre , Antígenos Helmínticos/genética , Clonación Molecular , Cisticercosis/inmunología , Cisticercosis/prevención & control , Cisticercosis/veterinaria , Mapeo Epitopo , Escherichia coli/genética , Expresión Génica , Ratones , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Porcinos , Linfocitos T/inmunología , Taenia solium/genética
20.
Planta ; 245(5): 1037-1048, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28194565

RESUMEN

MAIN CONCLUSION: Transgenic papaya callus lines expressing the components of the S3Pvac vaccine constitute a stable platform to produce an oral vaccine against cysticercosis caused by Taenia solium or T. crassiceps. The development of effective delivery systems to cope with the reduced immunogenicity of new subunit vaccines is a priority in vaccinology. Herein, experimental evidence supporting a papaya-based platform to produce needle-free, recombinant, highly immunogenic vaccines is shown. Papaya (Carica papaya) callus lines were previously engineered by particle bombardment to express the three protective peptides of the S3Pvac anti-cysticercosis vaccine (KETc7, KETc12, KETc1). Calli were propagated in vitro, and a stable integration and expression of the target genes has been maintained, as confirmed by PCR, qRT-PCR, and HPLC. These results point papaya calli as a suitable platform for long-term transgenic expression of the vaccine peptides. The previously demonstrated protective immunogenic efficacy of S3Pvac-papaya orally administered to mice is herein confirmed in a wider dose-range and formulated with different delivery vehicles, adequate for oral vaccination. This protection is accompanied by an increase in anti-S3Pvac antibody titers and a delayed hypersensitivity response against the vaccine. A significant increase in CD4+ and CD8+ lymphocyte proliferation was induced in vitro by each vaccine peptide in mice immunized with the lowest dose of S3Pvac papaya (0.56 ng of the three peptides in 0.1 µg of papaya callus total protein per mouse). In pigs, the obliged intermediate host for Taenia solium, S3Pvac papaya was also immunogenic when orally administered in a two-log dose range. Vaccinated pigs significantly increased anti-vaccine antibodies and mononuclear cell proliferation. Overall, the oral immunogenicity of this stable S3Pvac-papaya vaccine in mice and pigs, not requiring additional adjuvants, supports the interest in papaya callus as a useful platform for plant-based vaccines.


Asunto(s)
Antígenos Helmínticos/inmunología , Carica/metabolismo , Cisticercosis/veterinaria , Enfermedades de los Porcinos/prevención & control , Taenia solium/inmunología , Vacunas Sintéticas/inmunología , Administración Oral , Animales , Antígenos Helmínticos/administración & dosificación , Carica/genética , Carica/inmunología , Cisticercosis/parasitología , Cisticercosis/prevención & control , Femenino , Inmunización , Masculino , Ratones , Ratones Endogámicos BALB C , Plantas Modificadas Genéticamente , Porcinos , Enfermedades de los Porcinos/parasitología , Vacunas Sintéticas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA