Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 27(24): 4273-4287, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30212841

RESUMEN

The identity of the gonads is determined by which fate, ovarian granulosa cell or testicular Sertoli cell, the bipotential somatic cell precursors choose to follow. In most vertebrates, the conserved transcription factor FOXL2 contributes to the fate of granulosa cells. To understand FOXL2 functions during gonad differentiation, we performed genome-wide analysis of FOXL2 chromatin occupancy in fetal ovaries and established a genetic mouse model that forces Foxl2 expression in the fetal testis. When FOXL2 was ectopically expressed in the somatic cell precursors in the fetal testis, FOXL2 was sufficient to repress Sertoli cell differentiation, ultimately resulting in partial testis-to-ovary sex-reversal. Combining genome-wide analysis of FOXL2 binding in the fetal ovary with transcriptomic analyses of our Foxl2 gain-of-function and previously published Foxl2 loss-of-function models, we identified potential pathways responsible for the feminizing action of FOXL2. Finally, comparison of FOXL2 genome-wide occupancy in the fetal ovary with testis-determining factor SOX9 genome-wide occupancy in the fetal testis revealed extensive overlaps, implying that antagonistic signals between FOXL2 and SOX9 occur at the chromatin level.


Asunto(s)
Proteína Forkhead Box L2/genética , Factor de Transcripción SOX9/genética , Procesos de Determinación del Sexo/genética , Diferenciación Sexual/genética , Animales , Cromatina/genética , Femenino , Desarrollo Fetal/genética , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Genoma/genética , Gónadas/crecimiento & desarrollo , Masculino , Ratones , Ovario/crecimiento & desarrollo , Unión Proteica , Testículo/crecimiento & desarrollo , Transcriptoma/genética
2.
Methods Mol Biol ; 1960: 23-40, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30798518

RESUMEN

Transgenic mouse models can be subdivided into two main categories based on genomic location: (1) targeted genomic manipulation and (2) random integration into the genome. Despite the potential confounding insertional mutagenesis and host locus-dependent expression, random integration transgenics allowed for rapid in vivo assessment of gene/protein function. Since precise genomic manipulation required the time-consuming prerequisite of first generating genetically modified embryonic stem cells, the rapid nature of generating random integration transgenes remained a strong benefit outweighing various disadvantages. The advent of targetable nucleases, such as CRISPR/Cas9, has eliminated the prerequisite of first generating genetically modified embryonic stem cells for some types of targeted genomic mutations. This chapter outlines the generation of mouse models with targeted genomic manipulation using the CRISPR/Cas9 system directly into single cell mouse embryos.


Asunto(s)
Sistemas CRISPR-Cas/fisiología , Embrión de Mamíferos/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN por Unión de Extremidades/fisiología , Edición Génica , Ratones , Ratones Transgénicos
3.
Methods Mol Biol ; 1960: 1-21, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30798517

RESUMEN

The study of gene function in normal human physiology and pathophysiology is complicated by countless factors such as genetic diversity (~98 million SNPs identified in the human genome as of June 2015), environmental exposure, epigenetic imprinting, maternal/in utero exposure, diet, exercise, age, sex, socioeconomic factors, and many other variables. Inbred mouse lines have allowed researchers to control for many of the variables that define human diversity but complicate the study of the human genome, gene/protein function, cellular and molecular pathways, and countless other genetic diseases. Furthermore, genetically modified mouse models enable us to generate and study mice whose genomes differ by as little as a single point mutation while controlling for non-genomic variables. This allows researchers to elucidate the quintessential function of a gene, which will further not only our scientific understanding, but provide key insight into human health and disease. Recent advances in CRISPR/Cas9 genome editing have revolutionized scientific protocols for introducing mutations into the mammalian genome. The ensuing chapter provides an overview of CRISPR/Cas9 genome editing in murine embryonic stem cells for the generation of genetically modified mouse models.


Asunto(s)
Sistemas CRISPR-Cas/genética , Células Madre Embrionarias/metabolismo , Edición Génica/métodos , Animales , Ratones , Ratones Transgénicos , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA