Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2313475121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38976729

RESUMEN

CO2 mineralization products are often heralded as having outstanding potentials to reduce CO2-eq. emissions. However, these claims are generally undermined by incomplete consideration of the life cycle climate change impacts, material properties, supply and demand constraints, and economic viability of CO2 mineralization products. We investigate these factors in detail for ten concrete-related CO2 mineralization products to quantify their individual and global CO2-eq. emissions reduction potentials. Our results show that in 2020, 3.9 Gt of carbonatable solid materials were generated globally, with the dominant material being end-of-life cement paste in concrete and mortar (1.4 Gt y-1). All ten of the CO2 mineralization technologies investigated here reduce life cycle CO2-eq. emissions when used to substitute comparable conventional products. In 2020, the global CO2-eq. emissions reduction potential of economically competitive CO2 mineralization technologies was 0.39 Gt CO2-eq., i.e., 15% of that from cement production. This level of CO2-eq. emissions reduction is limited by the supply of end-of-life cement paste. The results also show that it is 2 to 5 times cheaper to reduce CO2-eq. emissions by producing cement from carbonated end-of-life cement paste than carbon capture and storage (CCS), demonstrating its superior decarbonization potential. On the other hand, it is currently much more expensive to reduce CO2-eq. emissions using some CO2 mineralization technologies, like carbonated normal weight aggregate production, than CCS. Technologies and policies that increase recovery of end-of-life cement paste from aged infrastructure are key to unlocking the potential of CO2 mineralization in reducing the CO2-eq. footprint of concrete materials.

2.
Mater Struct ; 56(1): 6, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36593923

RESUMEN

The aim of this study is to evaluate how much the changes in the concrete mix design, which enable carbon footprint reduction, are impacting mechanical properties and predicted service life of concrete structure. The starting point of this study was concrete mix used in a recent reinforced concrete Peljesac Bridge in the Adriatic. In the first round of experiments the amount of cement in this initial mix was significantly lowered, without jeopardising workability of the mix. In the second round, the main part of the cement was substituted with the combination of fly ash and limestone or calcined clay and limestone. All supplementary cementitious materials used were sourced in the region of the structure. The calcined clays used in this study were collected locally and found to have a low kaolin content. On all mixes fresh and mechanical properties were tested to ensure that the requested equal or better workability and mechanical stability were reached. Furthermore, on each mix chloride migration was tested to evaluate the resistance of mix to chloride penetration. All mixtures were evaluated based on the overall performance considering mechanical, durability, and carbon footprints. The results indicate that the total cement content had a significant effect on durability and thus service life. The bridge mix design was determined to be 'over designed,' as all alternative mixes achieved a similar or higher sustainability index with lower amount of cement. Supplementary Information: The online version contains supplementary material available at 10.1617/s11527-022-02090-9.

3.
J Am Chem Soc ; 144(50): 22915-22924, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36508687

RESUMEN

It has recently been demonstrated that the addition of zinc can enhance the mechanical strength of tricalcium silicates (C3S) upon hydration, but the structure of the main hydration product of cement, calcium silicate hydrate (C-S-H), in zinc-modified formulations remains unresolved. Here, we combine 29Si DNP-enhanced solid-state nuclear magnetic resonance (NMR), density functional theory (DFT)-based chemical shift computations, and molecular dynamics (MD) modeling to determine the atomic-level structure of zinc-modified C-S-H. The structure contains two main new silicon species (Q(1,Zn) and Q(2p,Zn)) where zinc substitutes Q(1) silicon species in dimers and bridging Q(2b) silicon sites, respectively. Structures determined as a function of zinc content show that zinc promotes an increase in the dreierketten mean chain lengths.


Asunto(s)
Silicio , Zinc , Zinc/química , Compuestos de Calcio/química , Silicatos/química
4.
J Microsc ; 286(2): 185-190, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35289927

RESUMEN

In a recent article, we described the edxia framework, a user-friendly framework to analyse the microstructure of cementitious materials using SEM-EDS hypermaps. The manual approach presented was shown to be efficient to answer the relevant scientific questions. However, it is limited for batch analysis and (semi-)automated treatments. In this article, we show how the framework can be used to customise the analysis to the problem at hand. We first present some possible extensions, and then we provide a simple example of automatic clustering, using the flexible Python scientific libraries which will allow to define more custom workflows in the future.

5.
Mater Struct ; 55(7): 192, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36042909

RESUMEN

The reaction kinetics of the alkali silica reaction depends on the composition of the pore solution. The evolution of the pore solution composition in different cement pastes and concretes was studied. Pastes containing silica fume or metakaolin had the lowest amount of alkalis in the pore solution. In addition, metakaolin increased the aluminium concentrations. The lowest expansion was measured for the concretes made of blended cement pastes with low alkali and hydroxide content in their pore solution, for the duration of the present study, no additional aluminium effect was observed due to the already low pH. Addition of 400 mM of Li slowed down expansion rate of concrete prisms at 40 and 60 °C, however, similar expansion was observed for samples with and without Li at 60 °C after 1 year. Temperature, alkali concentration and pH of pore solution all have a major effect on ASR expansion.

6.
J Am Chem Soc ; 142(25): 11060-11071, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32406680

RESUMEN

Despite use of blended cements containing significant amounts of aluminum for over 30 years, the structural nature of aluminum in the main hydration product, calcium aluminate silicate hydrate (C-A-S-H), remains elusive. Using first-principles calculations, we predict that aluminum is incorporated into the bridging sites of the linear silicate chains and that at high Ca:Si and H2O ratios, the stable coordination number of aluminum is six. Specifically, we predict that silicate-bridging [AlO2(OH)4]5- complexes are favored, stabilized by hydroxyl ligands and charge balancing calcium ions in the interlayer space. This structure is then confirmed experimentally by one- and two-dimensional dynamic nuclear polarization enhanced 27Al and 29Si solid-state NMR experiments. We notably assign a narrow 27Al NMR signal at 5 ppm to the silicate-bridging [AlO2(OH)4]5- sites and show that this signal correlates to 29Si NMR signals from silicates in C-A-S-H, conflicting with its conventional assignment to a "third aluminate hydrate" (TAH) phase. We therefore conclude that TAH does not exist. This resolves a long-standing dilemma about the location and nature of the six-fold-coordinated aluminum observed by 27Al NMR in C-A-S-H samples.

7.
J Phys Chem C Nanomater Interfaces ; 127(37): 18652-18661, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37752905

RESUMEN

Deciphering the calcium silicate hydrate (C-S-H) surface is crucial for unraveling the mechanisms of cement hydration and property development. Experimental observations of C-S-H in cement systems suggest a surface termination which is fundamentally different from the silicate-terminated surface assumed in many atomistic level studies. Here, a new multiparameter approach to describing the (001) basal C-S-H surface is developed, which considers how the surface termination affects the overall properties (Ca/Si ratio, mean chain length, relative concentration of silanol and hydroxide groups). Contrary to current beliefs, it is concluded that the (001) C-S-H surface is dominantly calcium terminated. Finally, an adsorption mechanism for calcium and hydroxide ions is proposed, which is in agreement with the surface charge densities observed in previous studies.

8.
Materials (Basel) ; 16(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614713

RESUMEN

The kaolinite content is principally responsible for the durability performance of Limestone Calcined Clay Cement (LC3), which calls into question its global applicability. The clay supply has a significant impact on the LC3 system's reduced carbon footprint advantage. The influence of kaolinite concentration from two separate clays (collected in East South-East Europe) on the durability performance of concrete was investigated in this study. The low-kaolinitic clay had 18% kaolinite, while the medium-kaolinitic clay contained around 41% kaolinite. The compressive strength, chloride intrusion, electrical conductivity, surface resistivity, and sorptivity index were measured on concrete after 28 days. Furthermore, the pore structure development of these mixtures was investigated in relation to the kaolinite content of the mixtures. The reactivity test was performed on clays to measure their reactivity levels within the cementitious system. The results show that kaolinite content has a moderate effect on compressive strength, but it has a considerable effect on other durability indices. When compared to the Portland cement mixture, the chloride migration and diffusion coefficients were reduced by 50% and 36%, respectively, in the combination with a medium kaolinite content (more than 40%). The low-kaolinitic clay, on the other hand, achieved 60% of the chloride penetration resistance of the medium-kaolinitic clay. Furthermore, low-kaolinitic clay has been demonstrated to be suitable for low-carbon concrete in moderate exposure conditions.

9.
Materials (Basel) ; 13(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266163

RESUMEN

There is an urgent need to apply available technologies to reduce the environmental impact of the construction industry. One of the possible solutions that can be implemented immediately is the industrial symbiosis between the waste-producing industries on the one hand and the cement industry, which consumes enormous amounts of raw materials for its production, on the other. In order for the industry to accelerate the use of these available materials and technologies, the potential of these materials must be disclosed. The present study shows a systematic approach to assess the potential of waste materials, by-products, and other raw materials available in the South East Europe that can be used in cement production. Their evaluation included the analysis of their availability, their chemical and physical properties, their chemical reactivity, and their contribution to the mortar's strength. Based on the results and the analyses carried out, a recommendation for immediate use in the construction sector is given for each of the materials collected.

10.
Solid State Nucl Magn Reson ; 36(1): 32-44, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19520553

RESUMEN

The applicability, reliability, and repeatability of 29Si MAS NMR for determination of the quantities of alite (Ca3SiO5) and belite (Ca2SiO4) in anhydrous Portland cement was investigated in detail for 11 commercial Portland cements and the results compared with phase quantifications based on powder X-ray diffraction combined with Rietveld analysis and with Taylor-Bogue calculations. The effects from paramagnetic ions (Fe3+) on the spinning sideband intensities, originating from dipolar couplings between 29Si and the spins of the paramagnetic electrons, were considered and analyzed in spectra recorded at four magnetic fields (4.7-14.1T) and this has led to an improved quantification of alite and belite from (29)Si MAS NMR spectra recorded at "high" spinning speeds of nu(R)=12.0-13.0kHz using 4 or 5mm rotors. Furthermore, the impact of Fe3+ ions on the spin-lattice relaxation was studied by inversion-recovery experiments and it was found that the relaxation is overwhelmingly dominated by the Fe3+ ions incorporated as guest-ions in alite and belite rather than the Fe3+ sites present in the intimately mixed ferrite phase (Ca2Al(x)Fe(2-)(x)O5).

11.
Med J Aust ; 182(2): 73-5, 2005 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-15651965

RESUMEN

We report an outbreak of a "rash" syndrome in patients attending methadone clinics in New South Wales. It presents with a pruritic, exanthematous or purpuric rash involving the trunk, limbs, palms and soles, which develops over a week and proceeds in most patients to desquamation (mainly of palms and soles) persisting for 3-4 weeks. Mucosae are not involved, and patients are generally systemically well. To date, the rash has affected 22% of 316 patients attending one methadone clinic in western Sydney, as well as patients in clinics elsewhere in Sydney and rural NSW. The aetiology is as yet unknown.


Asunto(s)
Brotes de Enfermedades , Exantema/epidemiología , Metadona , Centros de Tratamiento de Abuso de Sustancias , Adulto , Exantema/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nueva Gales del Sur/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA