Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 89(3): 937-950, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36352772

RESUMEN

PURPOSE: The MP2RAGE sequence is typically optimized for either T1 -weighted uniform image (UNI) or gray matter-dominant fluid and white matter suppression (FLAWS) contrast images. Here, the purpose was to optimize an MP2RAGE protocol at 7 Tesla to provide UNI and FLAWS images simultaneously in a clinically applicable acquisition time at <0.7 mm isotropic resolution. METHODS: Using the extended phase graph formalism, the signal evolution of the MP2RAGE sequence was simulated incorporating T2 relaxation, diffusion, RF spoiling, and B1 + variability. Flip angles and TI were optimized at different TRs (TRMP2RAGE ) to produce an optimal contrast-to-noise ratio for UNI and FLAWS images. Simulation results were validated by comparison to MP2RAGE brain scans of 5 healthy subjects, and a final protocol at TRMP2RAGE  = 4000 ms was applied in 19 subjects aged 8-62 years with and without epilepsy. RESULTS: FLAWS contrast images could be obtained while maintaining >85% of the optimal UNI contrast-to-noise ratio. Using TI1 /TI2 /TRMP2RAGE of 650/2280/4000 ms, 6/8 partial Fourier in the inner phase-encoding direction, and GRAPPA factor = 4 in the other, images with 0.65 mm isotropic resolution were produced in <7.5 min. The contrast-to-noise ratio was around 20% smaller at TRMP2RAGE  = 4000 ms compared to that at TRMP2RAGE  = 5000 ms; however, the 20% shorter duration makes TRMP2RAGE  = 4000 ms a good candidate for clinical applications example, pediatrics. CONCLUSION: FLAWS and UNI images could be obtained in a single scan with 0.65 mm isotropic resolution, providing a set of high-contrast images and full brain coverage in a clinically applicable scan time. Images with excellent anatomical detail were demonstrated over a wide age range using the optimized parameter set.


Asunto(s)
Sustancia Blanca , Humanos , Niño , Sustancia Blanca/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sustancia Gris , Neuroimagen
2.
Mol Psychiatry ; 27(11): 4707-4721, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36123424

RESUMEN

The precise development of the neocortex is a prerequisite for higher cognitive and associative functions. Despite numerous advances that have been made in understanding neuronal differentiation and cortex development, our knowledge regarding the impact of specific genes associated with neurodevelopmental disorders on these processes is still limited. Here, we show that Taok2, which is encoded in humans within the autism spectrum disorder (ASD) susceptibility locus 16p11.2, is essential for neuronal migration. Overexpression of de novo mutations or rare variants from ASD patients disrupts neuronal migration in an isoform-specific manner. The mutated TAOK2α variants but not the TAOK2ß variants impaired neuronal migration. Moreover, the TAOK2α isoform colocalizes with microtubules. Consequently, neurons lacking Taok2 have unstable microtubules with reduced levels of acetylated tubulin and phosphorylated JNK1. Mice lacking Taok2 develop gross cortical and cortex layering abnormalities. Moreover, acute Taok2 downregulation or Taok2 knockout delayed the migration of upper-layer cortical neurons in mice, and the expression of a constitutively active form of JNK1 rescued these neuronal migration defects. Finally, we report that the brains of the Taok2 KO and 16p11.2 del Het mouse models show striking anatomical similarities and that the heterozygous 16p11.2 microdeletion mouse model displayed reduced levels of phosphorylated JNK1 and neuronal migration deficits, which were ameliorated upon the introduction of TAOK2α in cortical neurons and in the developing cortex of those mice. These results delineate the critical role of TAOK2 in cortical development and its contribution to neurodevelopmental disorders, including ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Neocórtex , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Ratones , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Modelos Animales de Enfermedad , Microtúbulos/genética , Microtúbulos/metabolismo , Neocórtex/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(3): 1753-1761, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31896584

RESUMEN

Carbon dioxide (CO2), the major product of metabolism, has a strong impact on cerebral blood vessels, a phenomenon known as cerebrovascular reactivity. Several vascular risk factors such as hypertension or diabetes dampen this response, making cerebrovascular reactivity a useful diagnostic marker for incipient vascular pathology, but its functional relevance, if any, is still unclear. Here, we found that GPR4, an endothelial H+ receptor, and endothelial Gαq/11 proteins mediate the CO2/H+ effect on cerebrovascular reactivity in mice. CO2/H+ leads to constriction of vessels in the brainstem area that controls respiration. The consequential washout of CO2, if cerebrovascular reactivity is impaired, reduces respiration. In contrast, CO2 dilates vessels in other brain areas such as the amygdala. Hence, an impaired cerebrovascular reactivity amplifies the CO2 effect on anxiety. Even at atmospheric CO2 concentrations, impaired cerebrovascular reactivity caused longer apneic episodes and more anxiety, indicating that cerebrovascular reactivity is essential for normal brain function. The site-specific reactivity of vessels to CO2 is reflected by regional differences in their gene expression and the release of vasoactive factors from endothelial cells. Our data suggest the central nervous system (CNS) endothelium as a target to treat respiratory and affective disorders associated with vascular diseases.


Asunto(s)
Ansiedad/metabolismo , Sistema Cardiovascular/metabolismo , Endotelio/metabolismo , Trastornos Respiratorios/metabolismo , Amígdala del Cerebelo , Animales , Arteriolas/patología , Encéfalo/fisiología , Tronco Encefálico/metabolismo , Dióxido de Carbono/metabolismo , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Endotelio/patología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Expresión Génica , Humanos , Hipercapnia/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Respiración , Factores de Riesgo , Transducción de Señal
4.
Magn Reson Med ; 88(1): 180-194, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35266204

RESUMEN

PURPOSE: This work proposes a novel RF pulse design for parallel transmit (pTx) systems to obtain uniform saturation of semisolid magnetization for magnetization transfer (MT) contrast in the presence of transmit field B1+ inhomogeneities. The semisolid magnetization is usually modeled as being purely longitudinal, with the applied B1+ field saturating but not rotating its magnetization; thus, standard pTx pulse design methods do not apply. THEORY AND METHODS: Pulse design for saturation homogeneity (PUSH) optimizes pTx RF pulses by considering uniformity of root-mean squared B1+ , B1rms , which relates to the rate of semisolid saturation. Here we considered designs consisting of a small number of spatially non-selective sub-pulses optimized over either a single 2D plane or 3D. Simulations and in vivo experiments on a 7T Terra system with an 8-TX Nova head coil in five subjects were carried out to study the homogenization of B1rms and of the MT contrast by acquiring MT ratio maps. RESULTS: Simulations and in vivo experiments showed up to six and two times more uniform B1rms compared to circular polarized (CP) mode for 2D and 3D optimizations, respectively. This translated into 4 and 1.25 times more uniform MT contrast, consistently for all subjects, where two sub-pulses were enough for the implementation and coil used. CONCLUSION: The proposed PUSH method obtains more uniform and higher MT contrast than CP mode within the same specific absorption rate (SAR) budget.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Algoritmos , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Ondas de Radio
5.
J Neurooncol ; 160(2): 311-320, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36344852

RESUMEN

INTRODUCTION: Structural white matter changes associated with certain epilepsy subtypes have been demonstrated using diffusion tensor imaging (DTI). This observational study aims to identify potential water diffusion abnormalities in glioma patients with associated seizures. METHODS: Two cohorts from two centers were analyzed independently: (A) Prospectively recruited patients diagnosed with glioma who received preoperative DTI to measure mean diffusivity (MD) and fractional anisotropy (FA) in regions-of-interest (ROIs) including the marginal tumor zone (TU), adjacent peritumoral white matter as well as distant ipsilateral and contralateral white matter and cortex. Data were compared between patients with and without seizures and tested for statistical significance. (B) A retrospective cohort using an alternative technical approach sampling ROIs in contrast enhancement, necrosis, non-enhancing tumor, marginal non-enhancing tumor zone, peritumoral tissue, edema and non-tumorous tissue. RESULTS: (A) The prospective study cohort consisted of 23 patients with 12 (52.2%) presenting with a history of seizures. There were no significant seizure-associated differences in MD or FA for non-tumor white matter or cortical areas. MD-TU was significantly lower in patients with seizures (p = 0.005). (B) In the retrospective cohort consisting of 46 patients with a seizure incidence of 50.0%, significantly decreased normalized values of MD were observed for non-enhancing tumor regions of non-glioblastoma multiforme (GBM) cases in patients with seizures (p = 0.022). CONCLUSION: DTI analyses in glioma patients demonstrated seizure-associated diffusion restrictions in certain tumor-related areas. No other structural abnormalities in adjacent or distant white matter or cortical regions were detected.


Asunto(s)
Imagen de Difusión Tensora , Glioma , Humanos , Imagen de Difusión Tensora/métodos , Estudios Retrospectivos , Estudios Prospectivos , Glioma/complicaciones , Glioma/diagnóstico por imagen , Anisotropía , Convulsiones/diagnóstico por imagen , Convulsiones/etiología , Convulsiones/patología
6.
Neuroimage ; 238: 118102, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34058334

RESUMEN

OBJECTIVE: Malformations of cortical development (MCD), including focal cortical dysplasia (FCD), are the most common cause of drug-resistant focal epilepsy in children. Histopathological lesion characterisation demonstrates abnormal cell types and lamination, alterations in myelin (typically co-localised with iron), and sometimes calcification. Quantitative susceptibility mapping (QSM) is an emerging MRI technique that measures tissue magnetic susceptibility (χ) reflecting it's mineral composition. We used QSM to investigate abnormal tissue composition in a group of children with focal epilepsy with comparison to effective transverse relaxation rate (R2*) and Synchrotron radiation X-ray fluorescence (SRXRF) elemental maps. Our primary hypothesis was that reductions in χ would be found in FCD lesions, resulting from alterations in their iron and calcium content. We also evaluated deep grey matter nuclei for changes in χ with age. METHODS: QSM and R2* maps were calculated for 40 paediatric patients with suspected MCD (18 histologically confirmed) and 17 age-matched controls. Patients' sub-groups were defined based on concordant electro-clinical or histopathology data. Quantitative investigation of QSM and R2* was performed within lesions, using a surface-based approach with comparison to homologous regions, and within deep brain regions using a voxel-based approach with regional values modelled with age and epilepsy as covariates. Synchrotron radiation X-ray fluorescence (SRXRF) was performed on brain tissue resected from 4 patients to map changes in iron, calcium and zinc and relate them to MRI parameters. RESULTS: Compared to fluid-attenuated inversion recovery (FLAIR) or T1-weighted imaging, QSM improved lesion conspicuity in 5% of patients. In patients with well-localised lesions, quantitative profiling demonstrated decreased χ, but not R2*, across cortical depth with respect to the homologous regions. Contra-lateral homologous regions additionally exhibited increased χ at 2-3 mm cortical depth that was absent in lesions. The iron decrease measured by the SRXRF in FCDIIb lesions was in agreement with myelin reduction observed by Luxol Fast Blue histochemical staining. SRXRF analysis in two FCDIIb tissue samples showed increased zinc and calcium in one patient, and decreased iron in the brain region exhibiting low χ and high R2* in both patients. QSM revealed expected age-related changes in the striatum nuclei, substantia nigra, sub-thalamic and red nucleus. CONCLUSION: QSM non-invasively revealed cortical/sub-cortical tissue alterations in MCD lesions and in particular that χ changes in FCDIIb lesions were consistent with reduced iron, co-localised with low myelin and increased calcium and zinc content. These findings suggest that measurements of cortical χ could be used to characterise tissue properties non-invasively in epilepsy lesions.


Asunto(s)
Calcio/metabolismo , Corteza Cerebral/diagnóstico por imagen , Epilepsia Refractaria/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Hierro/metabolismo , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Zinc/metabolismo , Adolescente , Mapeo Encefálico , Corteza Cerebral/metabolismo , Niño , Preescolar , Epilepsia Refractaria/etiología , Epilepsia Refractaria/metabolismo , Femenino , Sustancia Gris/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/metabolismo , Estudios Retrospectivos , Adulto Joven
7.
Eur Radiol ; 31(11): 8228-8235, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33963911

RESUMEN

OBJECTIVE: Thrombus microfragmentation causing peripheral emboli (PE) during mechanical thrombectomy (MT) may modulate treatment effects, even in cases with successful reperfusion. This study aims to investigate whether intravenous alteplase is of potential benefit in reducing PE after successful MT. METHODS: Patients from a prospective study treated at a tertiary care stroke center between 08/2017 and 12/2019 were analyzed. The main inclusion criterion was successful reperfusion after MT (defined as expanded thrombolysis in cerebral infarction (eTICI) scale ≥ 2b50) of large vessel occlusion anterior circulation stroke. All patients received a high-resolution diffusion-weighted imaging (DWI) follow-up 24 h after MT for PE detection. Patients were grouped as "direct MT" (no alteplase) or as MT plus additional intravenous alteplase. The number and volume of ischemic core lesions and PE were then quantified and analyzed. RESULTS: Fifty-six patients were prospectively enrolled. Additional intravenous alteplase was administered in 46.3% (26/56). There were no statistically significant differences of PE compared by groups of direct MT and additional intravenous alteplase administration regarding mean numbers (12.1, 95% CI 8.6-15.5 vs. 11.1, 95% CI 7.0-15.1; p = 0.701), and median volume (0.70 mL, IQR 0.21-1.55 vs. 0.39 mL, IQR 0.10-1.62; p = 0.554). In uni- and multivariable linear regression analysis, higher eTICI scores were significantly associated with reduced PE, while the administration of alteplase was neither associated with numbers nor volume of peripheral emboli. Additional alteplase did not alter reperfusion success. CONCLUSIONS: Intravenous alteplase neither affects the number nor volume of sub-angiographic DWI-PE after successful endovascular reperfusion. In the light of currently running randomized trials, further studies are warranted to validate these findings. KEY POINTS: • Thrombus microfragmentation during endovascular stroke treatment may cause peripheral emboli that are only detectable on diffusion-weighted imaging and may directly compromise treatment effects. • In this prospective study, the application of intravenous alteplase did not influence the occurrence of peripheral emboli detected on high-resolution diffusion-weighted imaging. • A higher degree of recanalization was associated with a reduced number and volume of peripheral emboli and better functional outcome, while contrariwise, peripheral emboli did not modify the effect of recanalization on modified Rankin Scale scores at day 90.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Isquemia Encefálica/complicaciones , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/tratamiento farmacológico , Humanos , Estudios Prospectivos , Accidente Cerebrovascular/diagnóstico por imagen , Trombectomía , Activador de Tejido Plasminógeno , Resultado del Tratamiento
8.
Mol Psychiatry ; 24(9): 1329-1350, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-29467497

RESUMEN

Atypical brain connectivity is a major contributor to the pathophysiology of neurodevelopmental disorders (NDDs) including autism spectrum disorders (ASDs). TAOK2 is one of several genes in the 16p11.2 microdeletion region, but whether it contributes to NDDs is unknown. We performed behavioral analysis on Taok2 heterozygous (Het) and knockout (KO) mice and found gene dosage-dependent impairments in cognition, anxiety, and social interaction. Taok2 Het and KO mice also have dosage-dependent abnormalities in brain size and neural connectivity in multiple regions, deficits in cortical layering, dendrite and synapse formation, and reduced excitatory neurotransmission. Whole-genome and -exome sequencing of ASD families identified three de novo mutations in TAOK2 and functional analysis in mice and human cells revealed that all the mutations impair protein stability, but they differentially impact kinase activity, dendrite growth, and spine/synapse development. Mechanistically, loss of Taok2 activity causes a reduction in RhoA activation, and pharmacological enhancement of RhoA activity rescues synaptic phenotypes. Together, these data provide evidence that TAOK2 is a neurodevelopmental disorder risk gene and identify RhoA signaling as a mediator of TAOK2-dependent synaptic development.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Trastornos del Neurodesarrollo/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Adulto , Animales , Ansiedad/genética , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/psicología , Niño , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/psicología , Dendritas/metabolismo , Dendritas/patología , Femenino , Humanos , Relaciones Interpersonales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/psicología , Neurogénesis , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Transmisión Sináptica , Secuenciación del Exoma
9.
Stroke ; 49(1): 155-164, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29212740

RESUMEN

BACKGROUND AND PURPOSE: Inflammatory mechanisms can exacerbate ischemic tissue damage and worsen clinical outcome in patients with stroke. Both αß and γδ T cells are established mediators of tissue damage in stroke, and the role of dendritic cells (DCs) in inducing the early events of T cell activation and differentiation in stroke is not well understood. METHODS: In a murine model of experimental stroke, we defined the immune phenotype of infiltrating DC subsets based on flow cytometry of surface markers, the expression of ontogenetic markers, and cytokine levels. We used conditional DC depletion, bone marrow chimeric mice, and IL-23 (interleukin-23) receptor-deficient mice to further explore the functional role of DCs. RESULTS: We show that the ischemic brain was rapidly infiltrated by IRF4+/CD172a+ conventional type 2 DCs and that conventional type 2 DCs were the most abundant subset in comparison with all other DC subsets. Twenty-four hours after ischemia onset, conventional type 2 DCs became the major source of IL-23, promoting neutrophil infiltration by induction of IL-17 (interleukin-17) in γδ T cells. Functionally, the depletion of CD11c+ cells or the genetic disruption of the IL-23 signaling abrogated both IL-17 production in γδ T cells and neutrophil infiltration. Interruption of the IL-23/IL-17 cascade decreased infarct size and improved neurological outcome after stroke. CONCLUSIONS: Our results suggest a central role for interferon regulatory factor 4-positive IL-23-producing conventional DCs in the IL-17-dependent secondary tissue damage in stroke.


Asunto(s)
Isquemia Encefálica/inmunología , Células Dendríticas/inmunología , Interleucina-17/inmunología , Interleucina-23/inmunología , Accidente Cerebrovascular/inmunología , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Células Dendríticas/patología , Modelos Animales de Enfermedad , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/inmunología , Interleucina-17/genética , Interleucina-23/genética , Ratones , Ratones Noqueados , Infiltración Neutrófila/genética , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Neutrófilos/patología , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Linfocitos T/inmunología , Linfocitos T/patología
10.
Neuroimage ; 178: 583-601, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29763672

RESUMEN

PURPOSE: We present a computationally feasible and iterative multi-voxel spatially regularized algorithm for myelin water fraction (MWF) reconstruction. This method utilizes 3D spatial correlations present in anatomical/pathological tissues and underlying B1+-inhomogeneity or flip angle inhomogeneity to enhance the noise robustness of the reconstruction while intrinsically accounting for stimulated echo contributions using T2-distribution data alone. METHODS: Simulated data and in vivo data acquired using 3D non-selective multi-echo spin echo (3DNS-MESE) were used to compare the reconstruction quality of the proposed approach against those of the popular algorithm (the method by Prasloski et al.) and our previously proposed 2D multi-slice spatial regularization spatial regularization approach. We also investigated whether the inter-sequence correlations and agreements improved as a result of the proposed approach. MWF-quantifications from two sequences, 3DNS-MESE vs 3DNS-gradient and spin echo (3DNS-GRASE), were compared for both reconstruction approaches to assess correlations and agreements between inter-sequence MWF-value pairs. MWF values from whole-brain data of six volunteers and two multiple sclerosis patients are being reported as well. RESULTS: In comparison with competing approaches such as Prasloski's method or our previously proposed 2D multi-slice spatial regularization method, the proposed method showed better agreements with simulated truths using regression analyses and Bland-Altman analyses. For 3DNS-MESE data, MWF-maps reconstructed using the proposed algorithm provided better depictions of white matter structures in subcortical areas adjoining gray matter which agreed more closely with corresponding contrasts on T2-weighted images than MWF-maps reconstructed with the method by Prasloski et al. We also achieved a higher level of correlations and agreements between inter-sequence (3DNS-MESE vs 3DNS-GRASE) MWF-value pairs. CONCLUSION: The proposed algorithm provides more noise-robust fits to T2-decay data and improves MWF-quantifications in white matter structures especially in the sub-cortical white matter and major white matter tract regions.


Asunto(s)
Algoritmos , Mapeo Encefálico/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/anatomía & histología , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Vaina de Mielina/química , Vaina de Mielina/ultraestructura , Relación Señal-Ruido , Agua/análisis , Sustancia Blanca/química , Adulto Joven
11.
Hum Mol Genet ; 25(4): 777-91, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26681805

RESUMEN

CLN7 disease is an autosomal recessive, childhood-onset neurodegenerative lysosomal storage disorder caused by the defective lysosomal membrane protein CLN7. We have disrupted the Cln7/Mfsd8 gene in mice by targeted deletion of exon 2 generating a novel knockout (KO) mouse model for CLN7 disease, which recapitulates key features of human CLN7 disease pathology. Cln7 KO mice showed increased mortality and a neurological phenotype including hind limb clasping and myoclonus. Lysosomal dysfunction in the brain of mutant mice was shown by the storage of autofluorescent lipofuscin-like lipopigments, subunit c of mitochondrial ATP synthase and saposin D and increased expression of lysosomal cathepsins B, D and Z. By immunohistochemical co-stainings, increased cathepsin Z expression restricted to Cln7-deficient microglia and neurons was found. Ultrastructural analyses revealed large storage bodies in Purkinje cells of Cln7 KO mice containing inclusions composed of irregular, curvilinear and rectilinear profiles as well as fingerprint profiles. Generalized astrogliosis and microgliosis in the brain preceded neurodegeneration in the olfactory bulb, cerebral cortex and cerebellum in Cln7 KO mice. Increased levels of LC3-II and the presence of neuronal p62- and ubiquitin-positive protein aggregates suggested that impaired autophagy represents a major pathomechanism in the brain of Cln7 KO mice. The data suggest that loss of the putative lysosomal transporter Cln7 in the brain leads to lysosomal dysfunction, impaired constitutive autophagy and neurodegeneration late in disease.


Asunto(s)
Lisosomas/metabolismo , Lisosomas/patología , Proteínas de Transporte de Membrana/deficiencia , Lipofuscinosis Ceroideas Neuronales/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Animales , Autofagia/fisiología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Lipofuscinosis Ceroideas Neuronales/genética , Neuronas/metabolismo , Células de Purkinje/metabolismo
12.
J Magn Reson Imaging ; 48(5): 1199-1207, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29746715

RESUMEN

BACKGROUND: Germinal matrix-intraventricular hemorrhage (GMH-IVH) is a common form of intracranial hemorrhage occurring in preterm neonates that may affect normal brain development. Although the primary lesion is easily identified on MRI by the presence of blood products, its exact extent may not be recognizable with conventional sequences. Quantitative susceptibility mapping (QSM) quantify the spatial distribution of magnetic susceptibility within biological tissues, including blood degradation products. PURPOSE/HYPOTHESIS: To evaluate magnetic susceptibility of normal-appearing white (WM) and gray matter regions in preterm neonates with and without GMH-IVH. STUDY TYPE: Retrospective case-control. POPULATION: A total of 127 preterm neonates studied at term equivalent age: 20 had mild GMH-IVH (average gestational age 28.7 ± 2.1 weeks), 15 had severe GMH-IVH (average gestational age 29.3 ± 1.8 weeks), and 92 had normal brain MRI (average gestational age 29.8 ± 1.8 weeks). FIELD STRENGTH/SEQUENCE: QSM at 1.5 Tesla. ASSESSMENT: QSM analysis was performed for each brain hemisphere with a region of interest-based approach including five WM regions (centrum semiovale, frontal, parietal, temporal, and cerebellum), and a subcortical gray matter region (basal ganglia/thalami). STATISTICAL TESTS: Changes in magnetic susceptibility were explored using a one-way analysis of covariance, according to GMH-IVH severity (P < 0.05). RESULTS: In preterm neonates with normal brain MRI, all white and subcortical gray matter regions had negative magnetic susceptibility values (diamagnetic). Neonates with severe GMH-IVH showed higher positive magnetic susceptibility values (i.e. paramagnetic) in the centrum semiovale (0.0019 versus -0.0014 ppm; P < 0.001), temporal WM (0.0011 versus -0.0012 ppm; P = 0.037), and parietal WM (0.0005 versus -0.0001 ppm; P = 0.002) compared with controls. No differences in magnetic susceptibility were observed between neonates with mild GMH-IVH and controls (P = 0.236). DATA CONCLUSION: Paramagnetic susceptibility changes occur in several normal-appearing WM regions of neonates with severe GMH-IVH, likely related to the accumulation of hemosiderin/ferritin iron secondary to diffusion of extracellular hemoglobin from the ventricle into the periventricular WM. LEVEL OF EVIDENCE: 4 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1199-1207.


Asunto(s)
Hemorragia Cerebral/diagnóstico por imagen , Ventrículos Cerebrales/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Edad Gestacional , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Recién Nacido , Enfermedades del Recién Nacido/diagnóstico por imagen , Recien Nacido Prematuro , Estudios Retrospectivos
13.
Hum Brain Mapp ; 38(5): 2627-2634, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28240402

RESUMEN

The objective of this study was to measure neuromelanin-sensitive MRI contrast changes in the lateral-ventral tier of substantia nigra pars compacta in Parkinson's disease (PD). Histopathological studies of PD have demonstrated both massive loss of melanized dopamine neurons and iron accumulation in the substantia nigra pars compacta. Neurodegeneration is most profound in the lateral-ventral tier of this structure. We have previously shown in both healthy controls and individuals with PD that neuromelanin-sensitive MRI and iron-sensitive MRI contrast regions in substantia nigra overlap. This overlap region is located in the lateral-ventral tier. Exploiting this area of contrast overlap for region of interest selection, we developed a semi-automated image processing approach to characterize the lateral-ventral tier in MRI data. Here we apply this approach to measure magnetization transfer contrast, which corresponds to local neuromelanin density, in both the lateral-ventral tier and the entire pars compacta in 22 PD patients and 19 controls. Significant contrast reductions were seen in PD in both the entire pars compacta (P = 0.009) and in its lateral-ventral tier (P = 0.0002); in PD contrast was significantly lower in the lateral-ventral tier than in the entire pars compacta (P = 0.0008). These findings are the first in vivo evidence of the selective vulnerability of this nigral subregion in PD, and this approach may be developed for high impact biomarker applications. Hum Brain Mapp 38:2627-2634, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/complicaciones , Sustancia Negra/patología , Anciano , Análisis de Varianza , Estudios de Cohortes , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Curva ROC , Índice de Severidad de la Enfermedad , Sustancia Negra/diagnóstico por imagen , Encuestas y Cuestionarios
14.
Mov Disord ; 32(3): 441-449, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28004859

RESUMEN

BACKGROUND: In PD, at the time of diagnosis, approximately 50% of melanized dopaminergic neurons in SNpc have died, yet ongoing neuronal death and neuromelanin release with associated neuroinflammation and microglial activation continue, as does local iron accumulation. Previous studies investigating nigral iron accumulation used T2 / T2*-weighted contrasts to define the regions of interest in the SN. Given that T2 / T2*-weighted contrasts lack sensitivity to neuromelanin and thereby SNpc, neuromelanin-sensitive MRI provides better delineation of SNpc and allows the examination of increased iron deposition in SNpc more specifically and accurately. OBJECTIVES: To examine regions of the SNpc, defined by neuromelanin-sensitive MRI, exhibiting iron deposition in PD. METHODS: T1 -weighted and susceptibility weighted imaging data were obtained in a cohort of 82 subjects (54 controls and 28 PD patients). The PD patients were clinically diagnosed with an average UPDRS-III score of 37.9 ± 12.5 in the off medication state. Susceptibility weighted imaging data were analyzed using SNpc regions of interest defined by neuromelanin-sensitive MRI. RESULTS: Compared to control subjects, significantly more hypointense signal was observed in the SNpc defined by neuromelanin-sensitive MRI in the PD patients. In the PD group, the lateral ventral region of SNpc exhibited the greatest increase of hypointensity. This increase in the lateral ventral region of SNpc robustly differentiated PD patients from controls. CONCLUSION: T2*-weighted hypointense signal in the SNpc defined by neuromelanin-sensitive MRI is significantly increased in PD. It is most likely a measure sensitive to PD-related iron deposition and may serve as a robust biomarker of PD. © 2016 International Parkinson and Movement Disorder Society.


Asunto(s)
Hierro/metabolismo , Imagen por Resonancia Magnética/métodos , Melaninas/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Porción Compacta de la Sustancia Negra/diagnóstico por imagen , Porción Compacta de la Sustancia Negra/metabolismo , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
15.
J Magn Reson Imaging ; 43(4): 800-17, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26477610

RESUMEN

PURPOSE: To improve the quantification accuracy of transverse relaxometry by accounting for B1 -error, after minimizing slice profile imperfections. MATERIALS AND METHODS: The slice profile of refocusing pulses was optimized by setting refocusing slice thicknesses three times that of the excitation pulse. The first step of data processing combined the L-curve approach with the linearized version of the extended phase graph model to jointly estimate the temporal regularization constant map and the flip angle error (FAE)-map. The second step improved the noise robustness of the reconstruction by imposing a spatial smoothness constraint on T2 -distributions. The proposed method (spatial-regularization-with-FAE-correction) was evaluated against methods without FAE-correction (conventional-regularization-without-FAE-correction, spatial-regularization-without-FAE-correction) and conventional-regularization-with-FAE-correction using relevant statistics (simulated data: mean square myelin reconstruction error [MSMRE] and averaged-symmetric-Kullbeck-Leibler score [SKL] between returned distributions and ground truths; experimental data: median of mean square error [MMSE] of fitting across entire data-set and coefficient of variation [COV] in white-matter [WM] regions of interest [ROIs]). RESULTS: In simulation, our method resulted in reduced MSMRE (at signal-to-noise ratio [SNR] = 200: MSMRESpatial-regularization-without-FAEC = 0.057; MSMRESpatial-regularization-with-FAEC = 0.0107) and reduced SKL scores (at SNR = 200: SKLSpatial-regularization-without-FAEC = 0.061; SKLSpatial-regularization-with-FAEC = 0.0143). In human volunteers, our method yielded a reduced MSE of fitting (MMSESpatial-regularization-without-FAEC = (2.26 ± 0.60) × 10(-3) ; MMSESpatial-regularization-with-FAEC = (1.57 ± 0.44) × 10(-4) )and also resulted in reduced COV (COVSpatial-regularization-without-FAEC = 0.08-0.19; COVSpatial-regularization-with-FAEC = 0.09-0.12). In a water-phantom, a good correlation between the absolute value of measured B1 -map and FAE-map was found (regression analysis: slope = 1.04; R(2) = 0.66). CONCLUSION: The proposed method resulted in more accurate and noise robust myelin water fraction maps with improved depiction of subcortical WM structures.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Vaina de Mielina/química , Agua/química , Adulto , Algoritmos , Artefactos , Simulación por Computador , Femenino , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Modelos Estadísticos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Adulto Joven
16.
Neuroimage ; 112: 7-13, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25731994

RESUMEN

We characterize the contrast behavior of substantia nigra (SN) in both magnetization transfer (MT) imaging, which is believed to be sensitive to neuromelanin (NM), and susceptibility weighted imaging (SWI). Images were acquired with a MT prepared dual echo gradient echo sequence. The first echo was taken as the MT contrast image and the second was used to generate the SWI image. SN volumes were segmented from these two types of images using a thresholding method. The spatial and signal characteristics of the extracted SWI and MT volumes were compared. Both images showed the presence of SN but the volumes of the SN identified in the two are spatially incongruent. The MT volume was more caudal than the SWI volume and with only a 12% overlap between the two volumes. Considering the SN volumes in each hemisphere separately, the average distances between the centers of mass of the volumes from the two types images are 5.1±1.1mm and 4.1±1.2mm, respectively. The frequency offsets (homodyne filtered phase/echo time) for the volumes derived from MT (NM) images and SWI images are 0.09±0.32radians/s and -1.12±0.57radians/s (p<0.0001), respectively. The MT contrasts for the two volumes are 0.16±0.02 and 0.10±0.03 (p<0.001), respectively. Our results indicate that the two contrasts are sensitive to different portions of the SN, with MT seeing the more caudal portion of the SN than SWI, likely due to variations of NM and iron content in the SN. Despite the small overlap, these regions are complementary. Our results provide a new understanding of the contrast behavior of the SN in the two imaging approaches commonly used to image it and indicate that using both may yield a more comprehensive visualization of the SN.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Sustancia Negra/anatomía & histología , Adulto , Algoritmos , Biomarcadores , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Melaninas/metabolismo , Enfermedad de Parkinson/diagnóstico , Núcleo Rojo/anatomía & histología , Núcleo Rojo/metabolismo , Sustancia Negra/metabolismo
17.
Circ Res ; 113(8): 1013-22, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23780386

RESUMEN

RATIONALE: Blood-brain-barrier (BBB) breakdown and cerebral edema result from postischemic inflammation and contribute to mortality and morbidity after ischemic stroke. A functional role for the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in the regulation of reperfusion injury has not yet been demonstrated. OBJECTIVE: We sought to identify and characterize the relevance of CEACAM1-expressing inflammatory cells in BBB breakdown and outcome after ischemic stroke in Ceacam1(-/-) and wild-type mice. METHODS AND RESULTS: Focal ischemia was induced by temporary occlusion of the middle cerebral artery with a microfilament. Using MRI and Evans blue permeability assays, we observed increased stroke volumes, BBB breakdown and edema formation, reduction of cerebral perfusion, and brain atrophy in Ceacam1(-/-) mice. This translated into poor performance in neurological scoring and high poststroke-associated mortality. Elevated neutrophil influx, hyperproduction, and release of neutrophil-related matrix metalloproteinase-9 in Ceacam1(-/-) mice were confirmed by immune fluorescence, flow cytometry, zymography, and stimulation of neutrophils. Importantly, neutralization of matrix metalloproteinase-9 activity in Ceacam1(-/-) mice was sufficient to alleviate stroke sizes and improve survival to the level of CEACAM1-competent animals. Immune histochemistry of murine and human poststroke autoptic brains congruently identified abundance of CEACAM1(+)matrix metalloproteinase-9(+) neutrophils in the ischemic hemispheres. CONCLUSIONS: CEACAM1 controls matrix metalloproteinase-9 secretion by neutrophils in postischemic inflammation at the BBB after stroke. We propose CEACAM1 as an important inhibitory regulator of neutrophil-mediated tissue damage and BBB breakdown in focal cerebral ischemia.


Asunto(s)
Antígenos CD/metabolismo , Barrera Hematoencefálica/enzimología , Antígeno Carcinoembrionario/metabolismo , Moléculas de Adhesión Celular/metabolismo , Infarto de la Arteria Cerebral Media/enzimología , Mediadores de Inflamación/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neutrófilos/enzimología , Animales , Atrofia , Conducta Animal , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/patología , Edema Encefálico/enzimología , Edema Encefálico/inmunología , Edema Encefálico/patología , Permeabilidad Capilar , Antígeno Carcinoembrionario/genética , Modelos Animales de Enfermedad , Citometría de Flujo , Compuestos Heterocíclicos con 1 Anillo/farmacología , Humanos , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/inmunología , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/fisiopatología , Infarto de la Arteria Cerebral Media/prevención & control , Imagen por Resonancia Magnética , Masculino , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Actividad Motora , Examen Neurológico , Activación Neutrófila , Infiltración Neutrófila , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/patología , Sulfonas/farmacología , Factores de Tiempo
18.
Artículo en Inglés | MEDLINE | ID: mdl-38977290

RESUMEN

BACKGROUND AND PURPOSE: Neuronal ceroid lipofuscinoses (NCL) are a group of neurodegenerative disorders. Recently, enzyme replacement therapy (ERT) was approved for CLN2, a subtype of NCL. The aim of this study was to quantify brain volume loss in CLN2 disease of patients on ERT in comparison to a natural history cohort using magnetic resonance imaging (MRI). MATERIALS AND METHODS: Nineteen (13 female, 6 male) patients with CLN2 disease at one UK center were studied using serial 3D T1-weighted MRI (follow-up time, 1 to 9 years). Brain segmentation was done using FreeSurfer. Volume measurements for supratentorial grey and white matter, deep grey matter (basal ganglia/thalami), lateral ventricles, and cerebellar grey and white matter were recorded. The volume change over time was analyzed using a linear mixed-effects model excluding scans before treatment start. Comparison was made to a published natural history cohort of 12 patients (8 female, 4 male) which was reanalyzed using the same method. RESULTS: Brain volume loss of all segmented brain regions was much slower in treated patients compared to the natural history cohort. For example, supratentorial grey matter volume in treated patients decreased by 3±0.74% (p<0.001) annually compared to an annual volume loss of 16.8±1.5% (p<0.001) in the natural history cohort. CONCLUSIONS: Our treatment cohort showed a significantly slower rate of brain parenchymal volume loss compared to a natural history cohort in several anatomical regions. Our results complement prior clinical data which found a positive response to ERT. We demonstrate that automated MRI volumetry is a sensitive tool to monitor treatment response in children with CLN2 disease. ABBREVIATIONS: NCL = Neuronal Ceroid Lipofuscinosis, CLN2 = Neuronal Ceroid Lipofuscinosis type 2, TPP1 = tripeptidyl peptidase 1, ERT = enzyme replacement therapy, EMA = European Medicines Agency, ICV = intra-cerebro-ventricular reservoir.

19.
Biol Psychiatry ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942349

RESUMEN

BACKGROUND: Striatal hyperdopaminergia is implicated in the pathoetiology of schizophrenia, but how this relates to dopaminergic midbrain activity is unclear. Neuromelanin-sensitive MRI (NM-MRI) provides a marker of long-term dopamine function. We examined if midbrain NM-MRI contrast-to-noise ratio (NM-CNR) was higher in people with schizophrenia relative to controls and if this correlated with dopamine synthesis capacity. METHODS: N=154 participants (n=74 individuals with schizophrenia and n=80 healthy controls) underwent NM-MRI of the substantia nigra and ventral tegmental area (SN-VTA). A subset of the schizophrenia group (n=38) also received [18F]-DOPA PET to measure dopamine synthesis capacity (Kicer) in the SN-VTA and striatum. RESULTS: SN-VTA NM-CNR was significantly higher in patients with schizophrenia relative to controls (effect size=0.38, p=0.019). This effect was greatest for voxels in the medial and ventral SN-VTA. In patients, SN-VTA Kicer positively correlated with SN-VTA NM-CNR (r=0.44, p=0.005) and striatal Kicer (r=0.71, p<0.001). Voxelwise analysis demonstrated that SN-VTA NM-CNR was positively associated with striatal Kicer (r=0.53, p=0.005) and that this relationship appeared strongest between the ventral SN-VTA and associative striatum in schizophrenia. CONCLUSIONS: Our results suggest that neuromelanin levels are higher in patients with schizophrenia relative to controls, particularly in midbrain regions that project to parts of the striatum which receive innervation from the limbic and association cortices. The direct relationship between measures of neuromelanin and dopamine synthesis suggests that these aspects of schizophrenia pathophysiology are linked. Our findings highlight specific mesostriatal circuits as the loci of dopamine dysfunction in schizophrenia and, thus, potential therapeutic targets.

20.
J Magn Reson Imaging ; 37(3): 746-51, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23001593

RESUMEN

PURPOSE: To develop a reproducible small-animal dynamic contrast-enhanced (DCE) MRI set-up for mice through which volumes <100 µL can be accurately and safely injected and to test this set-up by means of DCE measurements in resting muscle and tumor tissue. MATERIALS AND METHODS: The contrast agent (CA) injection system comprised 2 MR-compatible syringe pumps placed 50 cm from the 7T magnet bore where the fringe field is approximately 40 mT. Microbore tubing and T-connector, close to the injection site, minimized dead volume (<10 µL). For DCE-MRI measurements in 8 CB-17 SCID mice with 1500-2500 mm(3) large orthotopic neuroblastoma, a bolus of 10-fold-diluted Gd-DTPA CA solution (0.1 mmol/kg) was delivered (5 µL/s), followed by a 50-µL saline flush. Retro-orbital injections were given instead of tail vein injections, because the peripheral vasculature was reduced because of large tumor burden. RESULTS: The CA injection was successful in 19 of 24 experiments. Optical assessment showed minimal dispersion of ink-colored CA bolus. Mean (± SD) pharmacokinetic parameters retrieved from DCE-MRI examinations in resting muscle (K(trans) = 0.038 ± 0.025 min(-1), k(ep) = 0.66 ± 0.48 min(-1), v(e) = 0.060 ± 0.014, v(p) = 0.033 ± 0.021) and tumor (K(trans) = 0.082 ± 0.071 min(-1), k(ep) = 0.82 ± 0.80 min(-1), v(e) = 0.121 ± 0.075, v(p) = 0.093 ± 0.051) agreed with those reported previously. CONCLUSION: We successfully designed and implemented a DCE-MRI set-up system with short injection lines and low dead volume. The system can be used at any field strength with the syringe pumps placed at a sufficiently low fringe field (<40 mT).


Asunto(s)
Medios de Contraste/farmacología , Imagen por Resonancia Magnética/métodos , Músculos/patología , Neoplasias/patología , Animales , Automatización , Calibración , Línea Celular Tumoral , Gadolinio DTPA , Humanos , Ratones , Ratones SCID , Trasplante de Neoplasias , Neuroblastoma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA