Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 294(39): 14185-14200, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31350336

RESUMEN

Recoding of UGA codons as selenocysteine (Sec) codons in selenoproteins depends on a selenocysteine insertion sequence (SECIS) in the 3'-UTR of mRNAs of eukaryotic selenoproteins. SECIS-binding protein 2 (SECISBP2) increases the efficiency of this process. Pathogenic mutations in SECISBP2 reduce selenoprotein expression and lead to phenotypes associated with the reduction of deiodinase activities and selenoprotein N expression in humans. Two functions have been ascribed to SECISBP2: binding of SECIS elements in selenoprotein mRNAs and facilitation of co-translational Sec insertion. To separately probe both functions, we established here two mouse models carrying two pathogenic missense mutations in Secisbp2 previously identified in patients. We found that the C696R substitution in the RNA-binding domain abrogates SECIS binding and does not support selenoprotein translation above the level of a complete Secisbp2 null mutation. The R543Q missense substitution located in the selenocysteine insertion domain resulted in residual activity and caused reduced selenoprotein translation, as demonstrated by ribosomal profiling to determine the impact on UGA recoding in individual selenoproteins. We found, however, that the R543Q variant is thermally unstable in vitro and completely degraded in the mouse liver in vivo, while being partially functional in the brain. The moderate impairment of selenoprotein expression in neurons led to astrogliosis and transcriptional induction of genes associated with immune responses. We conclude that differential SECISBP2 protein stability in individual cell types may dictate clinical phenotypes to a much greater extent than molecular interactions involving a mutated amino acid in SECISBP2.


Asunto(s)
Errores Innatos del Metabolismo/genética , Mutación Missense , Proteínas de Unión al ARN/metabolismo , Selenoproteínas/biosíntesis , Animales , Sitios de Unión , Encéfalo/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Fenotipo , Unión Proteica , Estabilidad Proteica , Proteolisis , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ribosomas/metabolismo , Selenocisteína/metabolismo
2.
Nucleic Acids Res ; 45(7): 4094-4107, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27956496

RESUMEN

Dual-assignment of codons as termination and elongation codons is used to expand the genetic code. In mammals, UGA can be reassigned to selenocysteine during translation of selenoproteins by a mechanism involving a 3΄ untranslated region (UTR) selenocysteine insertion sequence (SECIS) and the SECIS-binding protein Secisbp2. Here, we present data from ribosome profiling, RNA-Seq and mRNA half-life measurements that support distinct roles for Secisbp2 in UGA-redefinition and mRNA stability. Conditional deletions of the Secisbp2 and Trsp (tRNASec) genes in mouse liver were compared to determine if the effects of Secisbp2 loss on selenoprotein synthesis could be attributed entirely to the inability to incorporate Sec. As expected, tRNASec depletion resulted in loss of ribosome density downstream of all UGA-Sec codons. In contrast, the absence of Secisbp2 resulted in variable effects on ribosome density downstream of UGA-Sec codons that demonstrate gene-specific differences in Sec incorporation. For several selenoproteins in which loss of Secisbp2 resulted in greatly diminished mRNA levels, translational activity and Sec incorporation efficiency were shown to be unaffected on the remaining RNA. Collectively, these results demonstrate that Secisbp2 is not strictly required for Sec incorporation and has a distinct role in stabilizing mRNAs that can be separated from its effects on UGA-redefinition.


Asunto(s)
Codón de Terminación , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN de Transferencia Aminoácido-Específico/genética , Proteínas de Unión al ARN/fisiología , Selenoproteínas/genética , Animales , Células Cultivadas , Hepatocitos/metabolismo , Masculino , Metilación , Ratones , Ratones Noqueados , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , ARN de Transferencia Aminoácido-Específico/metabolismo , Proteínas de Unión al ARN/genética , Ribosomas/metabolismo , Selenoproteínas/biosíntesis
3.
Biochem J ; 462(1): 67-75, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24844465

RESUMEN

Secisbp2 [SECIS (selenocysteine insertion sequence)-binding protein 2] binds to SECIS elements located in the 3'-UTR region of eukaryotic selenoprotein mRNAs. It facilitates the incorporation of the rare amino acid selenocysteine in response to UGA codons. Inactivation of Secisbp2 in hepatocytes greatly reduced selenoprotein levels. Neuron-specific inactivation of Secisbp2 (CamK-Cre; Secisbp2fl/fl) reduced cerebral expression of selenoproteins to a lesser extent than inactivation of tRNA[Ser]Sec. This allowed us to study the development of cortical PV (parvalbumin)+ interneurons, which are completely lost in tRNA[Ser]Sec mutants. PV+ interneuron density was reduced in the somatosensory cortex, hippocampus and striatum. In situ hybridization for Gad67 (glutamic acid decarboxylase 67) confirmed the reduction of GABAergic (where GABA is γ-aminobutyric acid) interneurons. Because of the obvious movement phenotype involving a broad dystonic gait, we suspected basal ganglia dysfunction. Tyrosine hydroxylase expression was normal in substantia nigra neurons and their striatal terminals. However the densities of striatal PV+ and Gad67+ neurons were decreased by 65% and 49% respectively. Likewise, the density of striatal cholinergic neurons was reduced by 68%. Our observations demonstrate that several classes of striatal interneurons depend on selenoprotein expression. These findings may offer an explanation for the movement phenotype of selenoprotein P-deficient mice and the movement disorder and mental retardation described in a patient carrying SECISBP2 mutations.


Asunto(s)
Cuerpo Estriado/metabolismo , Interneuronas/fisiología , Proteínas de Unión al ARN/genética , Selenoproteínas/biosíntesis , Animales , Glutamato Descarboxilasa/biosíntesis , Ratones , Trastornos del Movimiento/genética , Parvalbúminas/biosíntesis , Selenocisteína/metabolismo , Corteza Somatosensorial/metabolismo
4.
Carcinogenesis ; 34(5): 1089-95, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23389288

RESUMEN

Selenium (Se) has long been known for its cancer prevention properties, but the molecular basis remains unclear. The principal questions in assessing the effect of dietary Se in cancer are whether selenoproteins, small molecule selenocompounds, or both, are involved, and under which conditions and genotypes Se may be protective. In this study, we examined diethylnitrosamine-induced hepatocarcinogenesis in mice lacking a subset of selenoproteins due to expression of a mutant selenocysteine tRNA gene (Trsp (A37G) mice). To uncouple the effects of selenocompounds and selenoproteins, these animals were examined at several levels of dietary Se. Our analysis revealed that tumorigenesis in Trsp (A37G) mice maintained on the adequate Se diet was increased. However, in the control, wild-type mice, both Se deficiency and high Se levels protected against tumorigenesis. We further found that the Se-deficient diet induced severe neurological phenotypes in Trsp A37G mice. Surprisingly, a similar phenotype could be induced in these mice at high dietary Se intake. Overall, our results show a complex role of Se in chemically induced hepatocarcinogenesis, which involves interaction among selenoproteins, selenocompounds and toxins, and depends on genotype and background of the animals.


Asunto(s)
Transformación Celular Neoplásica/inducido químicamente , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/prevención & control , Selenio/administración & dosificación , Selenoproteínas/genética , Selenoproteínas/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Dieta , Femenino , Genotipo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Fenotipo , ARN de Transferencia Aminoácido-Específico/genética
5.
J Virol ; 83(24): 12790-800, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19812154

RESUMEN

Endogenous retroviruses present in the human genome provide a rich record of ancient infections. All presently recognized elements, including the youngest and most intact proviruses of the human endogenous retrovirus K(HML-2) [HERV-K(HML-2)] family, have suffered postinsertional mutations during their time of chromosomal residence, and genes encoding the envelope glycoprotein (Env) have not been spared these mutations. In this study, we have, for the first time, reconstituted an authentic Env of a HERV-K(HML-2) provirus by back mutation of putative postinsertional amino acid changes of the protein encoded by HERV-K113. Aided by codon-optimized expression, we demonstrate that the reconstituted Env regained its ability to be incorporated into retroviral particles and to mediate entry. The original ancient HERV-K113 Env was synthesized as a moderately glycosylated gp95 precursor protein cleaved into surface and transmembrane (TM) subunits. Of the nine N-linked oligosaccharides, four are part of the TM subunit, contributing 15 kDa to its apparent molecular mass of 41 kDa. The carbohydrates, as well as the cytoplasmic tail, are critical for efficient intracellular trafficking, processing, stability, and particle incorporation. Whereas deletions of the carboxy-terminal 6 residues completely abrogated cleavage and virion association, more extensive truncations slightly enhanced incorporation but dramatically increased the ability to mediate entry of pseudotyped lentiviruses. Although the first HERV-K(HML-2) elements infected human ancestors about 30 million years ago, our findings indicate that their glycoproteins are in most respects remarkably similar to those of classical contemporary retroviruses and can still mediate efficient entry into mammalian cells.


Asunto(s)
Retrovirus Endógenos/química , Glicoproteínas/fisiología , Proteínas del Envoltorio Viral/fisiología , Secuencia de Aminoácidos , Animales , Células Cultivadas , Citoplasma/química , Retrovirus Endógenos/genética , Glicosilación , Humanos , Datos de Secuencia Molecular , Relación Estructura-Actividad , Proteínas del Envoltorio Viral/química
6.
Free Radic Biol Med ; 106: 270-277, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28232204

RESUMEN

Increased oxidative stress has been widely implicated in the pathogenesis in various forms of human epilepsy. Here, we report a homozygous mutation in TXNRD1 (thioredoxin reductase 1) in a family with genetic generalized epilepsy. TXNRD1 is an essential selenium-containing enzyme involved in detoxification of reactive oxygen species (ROS) and redox signaling. The TXNRD1 mutation p.Pro190Leu affecting a highly conserved amino acid residue was identified by whole-exome sequencing of blood DNA from the index patient. The detected mutation and its segregation within the family - all siblings of the index patient were homozygous and the parents heterozygous - were confirmed by Sanger sequencing. TXNRD1 activity was determined in subcellular fractions from a skeletal muscle biopsy and skin fibroblasts of the index patient and the expression levels of the mutated protein were assessed by 75Se labeling and Western blot analysis. As result of the mutation, the activity of TXNRD1 was reduced in the patient's fibroblasts and skeletal muscle (to 34±3% and 16±8% of controls, respectively). In fibroblasts, we detected reduced 75Se-labeling of the enzyme (41±3% of controls). An in-depth in vitro kinetic analysis of the recombinant mutated TXNRD1 indicated 30-40% lowered kcat/Se values. Therefore, a reduced activity of the enzyme in the patient's tissue samples is explained by (i) lower enzyme turnover and (ii) reduced abundance of the mutated enzyme as confirmed by Western blotting and 75Se labeling. The mutant fibroblasts were also found to be less resistant to a hydrogen peroxide challenge. Our data agree with a potential role of insufficient ROS detoxification for disease manifestation in genetic generalized epilepsy.


Asunto(s)
Epilepsia Generalizada/genética , Predisposición Genética a la Enfermedad , Estrés Oxidativo/genética , Tiorredoxina Reductasa 1/genética , Adolescente , Adulto , Niño , Preescolar , Epilepsia Generalizada/fisiopatología , Femenino , Glutatión/metabolismo , Homocigoto , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutación , Especies Reactivas de Oxígeno/metabolismo , Secuenciación del Exoma
7.
Free Radic Biol Med ; 75 Suppl 1: S9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26461424

RESUMEN

Selenoproteins contain the amino acid selenocysteine (Sec). The Sec insertion sequence (SECIS)-binding protein 2 (Secisbp2) binds to SECIS elements in the 3'-UTR of eukaryotic selenoprotein mRNAs. Mutations in SECISBP2 in humans lead to reduced selenoprotein expression thereby affecting thyroid hormone-dependent growth and differentiation processes. The most severe cases also display mental retardation and ataxia. Mouse models are needed to understand selenoprotein-dependent processes underlying the patients' pleiotropic phenotypes. Homozygous Secisbp2 deletion is embryonic lethal. Conditional deletion of Secisbp2 in hepatocytes significantly decreased selenoprotein expression and reduced the abundance of many, but not all, selenoprotein mRNAs. Regarding selenoprotein expression, compensatory Nrf2-dependent gene expression, or embryonic development, phenotypes were always milder in Secisbp2- than in tRNA(Sec)-deficient mice. Neuron-specific inactivation of Secisbp2 reduced cerebral expression of selenoproteins, but allowed to study the development of cortical PVpos interneurons, which are known to depend on selenoproteins. Cre expression spares the cerebellum of these mice, why we suspected that basal ganglia dysfunction may cause the obvious movement phenotype. We observed for the first time that the number of PVpos neurons was reduced by 50% in the caudate putamen of a selenoprotein-deficient mouse model. In situ hybridization for Gad67 showed that selenoprotein deficiency selectively reduced the number of PVpos GABAergic interneurons. We propose that the striatal neuron loss likely causes the movement disorder. The most striking novel finding of this work is the selective damage of PVpos/Gad67pos neurons in the striatum. The second key finding is that selenoprotein expression in hepatocytes and neurons is less dependent on Secisbp2 than on tRNA(Sec). This implies the possibility of Secisbp2-independent selenoprotein expression, albeit on a reduced level.

8.
Antioxid Redox Signal ; 21(6): 835-49, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-24274065

RESUMEN

AIMS: The selenocysteine insertion sequence (SECIS)-binding protein 2 (Secisbp2) binds to SECIS elements located in the 3'-untranslated region of eukaryotic selenoprotein mRNAs. Selenoproteins contain the rare amino acid selenocysteine (Sec). Mutations in SECISBP2 in humans lead to reduced selenoprotein expression thereby affecting thyroid hormone-dependent growth and differentiation processes. The most severe cases also display myopathy, hearing impairment, male infertility, increased photosensitivity, mental retardation, and ataxia. Mouse models are needed to understand selenoprotein-dependent processes underlying the patients' pleiotropic phenotypes. RESULTS: Unlike tRNA[Ser]Sec-deficient embryos, homozygous Secisbp2-deleted embryos implant, but fail before gastrulation. Heterozygous inactivation of Secisbp2 reduced the amount of selenoprotein expressed, but did not affect the thyroid hormone axis or growth. Conditional deletion of Secisbp2 in hepatocytes significantly decreased selenoprotein expression. Unexpectedly, the loss of Secisbp2 reduced the abundance of many, but not all, selenoprotein mRNAs. Transcript-specific and gender-selective effects on selenoprotein mRNA abundance were greater in Secisbp2-deficient hepatocytes than in tRNA[Ser]Sec-deficient cells. Despite the massive reduction of Dio1 and Sepp1 mRNAs, significantly more corresponding protein was detected in primary hepatocytes lacking Secisbp2 than in cells lacking tRNA[Ser]Sec. Regarding selenoprotein expression, compensatory nuclear factor, erythroid-derived, like 2 (Nrf2)-dependent gene expression, or embryonic development, phenotypes were always milder in Secisbp2-deficient than in tRNA[Ser]Sec-deficient mice. INNOVATION: We report the first Secisbp2 mutant mouse models. The conditional mutants provide a model for analyzing Secisbp2 function in organs not accessible in patients. CONCLUSION: In hepatocyte-specific conditional mouse models, Secisbp2 gene inactivation is less detrimental than tRNA[Ser]Sec inactivation. A role of Secisbp2 in stabilizing selenoprotein mRNAs in vivo was uncovered.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Selenoproteínas/genética , Alelos , Empalme Alternativo , Animales , Femenino , Orden Génico , Silenciador del Gen , Marcación de Gen , Sitios Genéticos , Genotipo , Hepatocitos/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Mutación , Factor 2 Relacionado con NF-E2/metabolismo , ARN Mensajero/genética
9.
Curr Protein Pept Sci ; 13(4): 337-46, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22708491

RESUMEN

Selenoproteins are defined as proteins containing the 21st proteinogenic amino acid, selenocysteine (Sec). Sec is encoded by UGA (STOP) codons which are re-coded to Sec by the presence of a selenocysteine insertion sequence (SECIS) element in the 3'-untranslated region of selenoprotein mRNAs. The SECIS element is bound by several proteins, including SECIS-binding protein 2 (SBP2). Translation of selenoproteins critically depends on the integrity of the SECIS element - SBP2 interaction. Mutations in a SECIS element can abrogate expression of the respective selenoprotein. Mutations in SBP2 impinge on biosynthesis of a subset of selenoproteins and lead to a syndrome including hormonal, neurological, immunological symptoms as well as myopathy. Several other RNA-binding proteins are involved in selenoprotein translation and mediate the hierarchical response of selenoproteins to selenium deficiency. Global inhibition of selenoprotein translation is lethal in the mouse and hypomorphic mutations in selenocysteine synthase in humans leads to Progressive Cerebello Cerebral Atrophy, a neurodevelopmental and neurodegenerative disease in pediatric patients.


Asunto(s)
Procesamiento Postranscripcional del ARN/genética , Selenoproteínas/biosíntesis , Animales , Secuencia de Bases , Enfermedad/genética , Código Genético/genética , Humanos , Datos de Secuencia Molecular , ARN de Transferencia/química , ARN de Transferencia/genética , Selenocisteína/metabolismo
10.
PLoS One ; 5(12): e15632, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21203514

RESUMEN

BACKGROUND: Xenotropic murine leukemia virus-related virus (XMRV), a novel human retrovirus originally identified in prostate cancer tissues, has recently been associated with chronic fatigue syndrome (CFS), a disabling disease of unknown etiology affecting millions of people worldwide. However, several subsequent studies failed to detect the virus in patients suffering from these illnesses or in healthy subjects. Here we report the results of efforts to detect antibody responses and viral sequences in samples from a cohort of German CFS and relapsing remitting multiple sclerosis (MS) patients with fatigue symptoms. METHODOLOGY: Blood samples were taken from a cohort of 39 patients fulfilling the Fukuda/CDC criteria (CFS), from 112 patients with an established MS diagnosis and from 40 healthy donors. Fatigue severity in MS patients was assessed using the Fatigue Severity Scale (FSS). Validated Gag- and Env-ELISA assays were used to screen sera for XMRV antibodies. PHA-activated PBMC were cultured for seven days in the presence of IL-2 and DNA isolated from these cultures as well as from co-cultures of PBMC and highly permissive LNCaP cells was analyzed by nested PCR for the presence of the XMRV gag gene. In addition, PBMC cultures were exposed to 22Rv1-derived XMRV to assess infectivity and virus production. CONCLUSION: None of the screened sera from CFS and MS patients or healthy blood donors tested positive for XMRV specific antibodies and all PBMC (and PBMC plus LNCaP) cultures remained negative for XMRV sequences by nested PCR. These results argue against an association between XMRV infection and CFS and MS in Germany. However, we could confirm that PBMC cultures from healthy donors and from CFS patients can be experimentally infected by XMRV, resulting in the release of low levels of transmittable virus.


Asunto(s)
Síndrome de Fatiga Crónica/sangre , Síndrome de Fatiga Crónica/virología , Esclerosis Múltiple Recurrente-Remitente/sangre , Esclerosis Múltiple Recurrente-Remitente/virología , Virus Relacionado con el Virus Xenotrópico de la Leucemia Murina/genética , Adulto , Línea Celular Tumoral , Estudios de Cohortes , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Alemania , Humanos , Técnicas In Vitro , Leucocitos Mononucleares/virología , Masculino , Microscopía Fluorescente/métodos , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA