Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 50(5): 1218-1231.e5, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30952607

RESUMEN

Patients with the neurological disorder HSAN-I suffer frequent infections, attributed to a lack of pain sensation and failure to seek care for minor injuries. Whether protective CD8+ T cells are affected in HSAN-I patients remains unknown. Here, we report that HSAN-I-associated mutations in serine palmitoyltransferase subunit SPTLC2 dampened human T cell responses. Antigen stimulation and inflammation induced SPTLC2 expression, and murine T-cell-specific ablation of Sptlc2 impaired antiviral-T-cell expansion and effector function. Sptlc2 deficiency reduced sphingolipid biosynthetic flux and led to prolonged activation of the mechanistic target of rapamycin complex 1 (mTORC1), endoplasmic reticulum (ER) stress, and CD8+ T cell death. Protective CD8+ T cell responses in HSAN-I patient PBMCs and Sptlc2-deficient mice were restored by supplementing with sphingolipids and pharmacologically inhibiting ER stress-induced cell death. Therefore, SPTLC2 underpins protective immunity by translating extracellular stimuli into intracellular anabolic signals and antagonizes ER stress to promote T cell metabolic fitness.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Serina C-Palmitoiltransferasa/genética , Animales , Proliferación Celular , Células Cultivadas , Citocinas/biosíntesis , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/inmunología , Femenino , Humanos , Coriomeningitis Linfocítica/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Transducción de Señal/inmunología , Esfingolípidos/biosíntesis
2.
Clin Genet ; 102(3): 244-245, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35726688

RESUMEN

Confirmation of the newly described 1p36.13-1p36.12 microdeletion syndrome by finding of a 2,2 Mb deletion in the critical region in a Czech two generation family with a very similar phenotype, but in addition also polyneuropathy of lower limbs.


Asunto(s)
Deleción Cromosómica , Trastornos de los Cromosomas , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 1/genética , República Checa , Humanos , Fenotipo , Síndrome
3.
Ann Neurol ; 90(5): 738-750, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34564892

RESUMEN

OBJECTIVE: Hereditary spastic paraplegia (HSP) is a highly heterogeneous neurologic disorder characterized by lower-extremity spasticity. Here, we set out to determine the genetic basis of an autosomal dominant, pure, and infantile-onset form of HSP in a cohort of 8 patients with a uniform clinical presentation. METHODS: Trio whole-exome sequencing was used in 5 index patients with infantile-onset pure HSP to determine the genetic cause of disease. The functional impact of identified genetic variants was verified using bioinformatics and complementary cellular and biochemical assays. RESULTS: Distinct heterozygous KPNA3 missense variants were found to segregate with the clinical phenotype in 8 patients; in 4 of them KPNA3 variants had occurred de novo. Mutant karyopherin-α3 proteins exhibited a variable pattern of altered expression level, subcellular distribution, and protein interaction. INTERPRETATION: Our genetic findings implicate heterozygous variants in KPNA3 as a novel cause for autosomal dominant, early-onset, and pure HSP. Mutant karyopherin-α3 proteins display varying deficits in molecular and cellular functions, thus, for the first time, implicating dysfunctional nucleocytoplasmic shuttling as a novel pathomechanism causing HSP. ANN NEUROL 2021;90:738-750.


Asunto(s)
Mutación/genética , Paraplejía Espástica Hereditaria/genética , alfa Carioferinas/genética , Adulto , Preescolar , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Secuenciación del Exoma/métodos , Adulto Joven
4.
Am J Hum Genet ; 102(3): 505-514, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499166

RESUMEN

Although mutations in more than 90 genes are known to cause CMT, the underlying genetic cause of CMT remains unknown in more than 50% of affected individuals. The discovery of additional genes that harbor CMT2-causing mutations increasingly depends on sharing sequence data on a global level. In this way-by combining data from seven countries on four continents-we were able to define mutations in ATP1A1, which encodes the alpha1 subunit of the Na+,K+-ATPase, as a cause of autosomal-dominant CMT2. Seven missense changes were identified that segregated within individual pedigrees: c.143T>G (p.Leu48Arg), c.1775T>C (p.Ile592Thr), c.1789G>A (p.Ala597Thr), c.1801_1802delinsTT (p.Asp601Phe), c.1798C>G (p.Pro600Ala), c.1798C>A (p.Pro600Thr), and c.2432A>C (p.Asp811Ala). Immunostaining peripheral nerve axons localized ATP1A1 to the axolemma of myelinated sensory and motor axons and to Schmidt-Lanterman incisures of myelin sheaths. Two-electrode voltage clamp measurements on Xenopus oocytes demonstrated significant reduction in Na+ current activity in some, but not all, ouabain-insensitive ATP1A1 mutants, suggesting a loss-of-function defect of the Na+,K+ pump. Five mutants fall into a remarkably narrow motif within the helical linker region that couples the nucleotide-binding and phosphorylation domains. These findings identify a CMT pathway and a potential target for therapy development in degenerative diseases of peripheral nerve axons.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Genes Dominantes , Mutación/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Niño , Familia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , ATPasa Intercambiadora de Sodio-Potasio/química , Adulto Joven
5.
Clin Genet ; 98(6): 548-554, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32860223

RESUMEN

Non-syndromic autosomal recessive hearing loss is an extremely heterogeneous disease caused by mutations in more than 80 genes. We examined Czech patients with early/prelingual non-syndromic, presumably genetic hearing loss (NSHL) without known cause after GJB2 gene testing. Four hundred and twenty-one unrelated patients were examined for STRC gene deletions with quantitative comparative fluorescent PCR (QCF PCR), 197 unrelated patients with next-generation sequencing by custom-designed NSHL gene panels and 19 patients with whole-exome sequencing (WES). Combining all methods, we discovered the cause of the disease in 54 patients. The most frequent type of NSHL was DFNB16 (STRC), which was detected in 22 patients, almost half of the clarified patients. Other biallelic pathogenic mutations were detected in the genes: MYO15A, LOXHD1, TMPRSS3 (each gene was responsible for five clarified patients, CDH23 (four clarified patients), OTOG and OTOF (each gene was responsible for two clarified patients). Other genes (AIFM1, CABP2, DIAPH1, PTPRQ, RDX, SLC26A4, TBC1D24, TECTA, TMC1) that explained the cause of hearing impairment were further detected in only one patient for each gene. STRC gene mutations, mainly deletions remain the most frequent NSHL cause after mutations in the GJB2.


Asunto(s)
Conexina 26/genética , Sordera/genética , Pérdida Auditiva/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Adolescente , Adulto , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Proteínas Portadoras/genética , Niño , República Checa/epidemiología , Sordera/embriología , Sordera/patología , Femenino , Predisposición Genética a la Enfermedad , Pérdida Auditiva/epidemiología , Pérdida Auditiva/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Mutación/genética , Miosinas/genética , Proteínas de Neoplasias/genética , Serina Endopeptidasas/genética , Secuenciación del Exoma , Adulto Joven
6.
Neuropediatrics ; 50(1): 57-60, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30517966

RESUMEN

INTRODUCTION: Neurodegenerative diseases of childhood present with progressive decline in cognitive, social, and motor function and are frequently associated with seizures in different stages of the disease. Here we report a patient with severe progressive neurodegeneration with drug-resistant epilepsy of unknown etiology from the age of 2 years. METHODS AND RESULTS: Using whole exome sequencing, we found heterozygous missense de novo variant c.628G > A (p.Glu210Lys) in the UBTF gene. This variant was recently described as de novo in 11 patients with similar neurodegeneration characterized by developmental decline initially confined to motor development followed by language regression, appearance of an extrapyramidal movement disorder, and leading to severe intellectual disability. In 3 of the 11 patients described so far, seizures were also present. CONCLUSIONS: Our report expands the complex phenotype of neurodegeneration associated with the c.628G > A variant in the UBTF gene and helps to clarify the relation between this one single recurrent pathogenic variant described in this gene to date and its phenotype. The UBTF gene should be considered a novel candidate gene in neurodegeneration with or without epilepsy.


Asunto(s)
Epilepsia Refractaria/genética , Mutación/genética , Enfermedades Neurodegenerativas/genética , Fenotipo , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Adolescente , Epilepsia Refractaria/complicaciones , Epilepsia Refractaria/diagnóstico por imagen , Humanos , Masculino , Enfermedades Neurodegenerativas/complicaciones , Enfermedades Neurodegenerativas/diagnóstico por imagen
7.
Eur Arch Otorhinolaryngol ; 276(12): 3353-3358, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31552524

RESUMEN

INTRODUCTION: Hearing loss is the most frequent sensory disorder and is genetically extremely heterogeneous. By far the most frequent cause of nonsyndromic autosomal recessive hearing loss (AR-NSHL) are biallelic pathogenic mutations in the GJB2 gene causing DFNB1. The worldwide search for the second most common type of AR-NSHL took almost two decades. Recently reported alterations (mostly deletions) of the STRC gene, also named DFNB16, seem to be the second most frequent cause of AR-NSHL. Genetic testing of STRC is very challenging due to the highly homologous pseudogene. Anecdotal evidence from single patients shows that STRC mutations have their typical audiological findings and patients usually have moderate hearing loss. The aim of this study is to discover if audiological findings in patients with biallelic pathogenic mutations affecting STRC have the characteristic features and shape of audiological curves and if there are genotype/phenotype correlations in relation to various types of STRC mutations. METHODS: Eleven hearing loss patients with pathogenic mutations on both alleles of the STRC gene were detected during routine genetic examination of AR-NSHL patients. Audiological examination consisted of pure tone audiometry, stapedial reflexes, tympanometry and otoacoustic emission tests. RESULTS: The threshold of pure tone average (PTA) was 46 dB and otoacoustic emissions were not detectable in these DFNB16 patients. All patients were without vestibular irritation or asymmetry. CONCLUSION: Moderate sensorineural hearing loss is typical for DFNB16-associated hearing loss and there are no significant differences in audiological phenotypes among different types of mutations affecting STRC.


Asunto(s)
Sordera/genética , Pérdida Auditiva Sensorineural/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Adolescente , Adulto , Alelos , Audiometría , Niño , Conexinas/genética , Femenino , Estudios de Asociación Genética , Pérdida Auditiva Sensorineural/diagnóstico , Pruebas Auditivas , Humanos , Masculino , Mutación/genética , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple/genética , Eliminación de Secuencia/genética , Adulto Joven
8.
J Hum Genet ; 63(7): 803-810, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29636544

RESUMEN

Approximately 20 cases of genome-wide uniparental disomy or diploidy (GWUPD) as mosaicism have previously been reported. We present the case of an 11-year-old deaf girl with a paternal uniparental diploidy or isodisomy with a genome-wide loss of heterozygosity (LOH). The patient was originally tested for non-syndromic deafness, and the novel variant p.V234I in the ESRRB gene was found in a homozygous state. Our female proband is the seventh patient diagnosed with GWUPD at a later age and is probably the least affected of the seven, as she has not yet presented any malignancy. Most, if not all, reported patients with GWUPD whose clinical details have been published have developed malignancy, and some of those patient developed malignancy several times. Therefore, our patient has a high risk of malignancy and is carefully monitored by a specific outpatient pediatric oncology program. This observation seems to be novel and unique in a GWUPD patient. Our study is also unique as it not only provides very detailed documentation of the genomic situations of various tissues but also reports differences in the mosaic ratios between the blood and saliva, as well as a normal biparental allelic situation in the skin and biliary duct. Additionally, we were able to demonstrate that the mosaic ratio in the blood remained stable even after 3 years and has not changed over a longer period.


Asunto(s)
Sordera/genética , Diploidia , Mosaicismo , Mutación , Receptores de Estrógenos/genética , Disomía Uniparental , Secuencia de Bases , Niño , Sordera/diagnóstico , Sordera/fisiopatología , Femenino , Expresión Génica , Estudio de Asociación del Genoma Completo , Inestabilidad Genómica , Humanos , Pérdida de Heterocigocidad , Linaje , Análisis de Secuencia de ADN
10.
J Neurol Neurosurg Psychiatry ; 89(8): 870-878, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29449460

RESUMEN

BACKGROUND: Charcot-Marie-Tooth type 2 (CMT2) neuropathy is characterised by a vast clinical and genetic heterogeneity complicating its diagnosis and therapeutic intervention. Identification of molecular signatures that are common to multiple CMT2 subtypes can aid in developing therapeutic strategies and measuring disease outcomes. METHODS: A proteomics-based approach was performed on lymphoblasts from CMT2 patients genetically diagnosed with different gene mutations to identify differentially regulated proteins. The candidate proteins were validated through real-time quantitative PCR and western blotting on lymphoblast samples of patients and controls, motor neurons differentiated from patient-derived induced pluripotent stem cells (iPSCs) and sciatic nerves of CMT2 mouse models. RESULTS: Proteomic profiling of patient lymphoblasts resulted in the identification of profilin 2 (PFN2) and guanidinoacetate methyltransferase (GAMT) as commonly downregulated proteins in different genotypes compared with healthy controls. This decrease was also observed at the transcriptional level on screening 43 CMT2 patients and 22 controls, respectively. A progressive decrease in PFN2 expression with age was observed in patients, while in healthy controls its expression increased with age. Reduced PFN2 expression was also observed in motor neurons differentiated from CMT2 patient-derived iPSCs and sciatic nerves of CMT2 mice when compared with controls. However, no change in GAMT levels was observed in motor neurons and CMT2 mouse-derived sciatic nerves. CONCLUSIONS: We unveil PFN2 and GAMT as molecular determinants of CMT2 with possible indications of the role of PFN2 in the pathogenesis and disease progression. This is the first study describing biomarkers that can boost the development of therapeutic strategies targeting a wider spectrum of CMT2 patients.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Genotipo , Guanidinoacetato N-Metiltransferasa/genética , Mutación , Profilinas/genética , Adulto , Anciano , Axones/patología , Enfermedad de Charcot-Marie-Tooth/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Proteómica , Adulto Joven
11.
Neuropediatrics ; 49(3): 204-208, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29444535

RESUMEN

BACKGROUND: Recently, a study providing insight into GABRB3 mutational spectrum was published (Møller et al 2017). The authors report considerable pleiotropy even for single mutations and were not able to identify any genotype-phenotype correlations. METHODS: The proband (twin B) was referred for massively parallel sequencing of epilepsy-related gene panel because of hypotonia and neonatal seizures. The revealed variant was confirmed with Sanger sequencing in the proband and the twin A, and both parents were tested for the presence of the variant. RESULTS: We report a case of epilepsy of infancy with migrating focal seizures (EIMFS) of neonatal onset in monozygotic twins with a de novo novel GABRB3 variant p.Thr281Ala. The variant has a uniform presentation on an identical genomic background. In addition, early seizure-onset epilepsy associated with GABRB3 mutation has been until now described only for the p.Leu256Gln variant in the GABRB3 (Møller et al 2017, Myers et al 2016) located in the transmembrane domain just as the p.Thr281Ala variant described here. CONCLUSION: De novo GABRB3 mutations may cause neonatal-onset EIMFS with early-onset hypotonia, respiratory distress, and severe developmental delay.


Asunto(s)
Enfermedades en Gemelos/genética , Epilepsia/genética , Mutación , Receptores de GABA-A/genética , Gemelos Monocigóticos/genética , Edad de Inicio , Enfermedades en Gemelos/tratamiento farmacológico , Enfermedades en Gemelos/epidemiología , Epilepsia/tratamiento farmacológico , Epilepsia/epidemiología , Femenino , Humanos , Lactante , Recién Nacido
12.
PLoS Genet ; 11(3): e1005050, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25749076

RESUMEN

Inverted repeats (IRs) can facilitate structural variation as crucibles of genomic rearrangement. Complex duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) rearrangements that contain breakpoint junctions within IRs have been recently associated with both MECP2 duplication syndrome (MIM#300260) and Pelizaeus-Merzbacher disease (PMD, MIM#312080). We investigated 17 unrelated PMD subjects with copy number gains at the PLP1 locus including triplication and quadruplication of specific genomic intervals-16/17 were found to have a DUP-TRP/INV-DUP rearrangement product. An IR distal to PLP1 facilitates DUP-TRP/INV-DUP formation as well as an inversion structural variation found frequently amongst normal individuals. We show that a homology-or homeology-driven replicative mechanism of DNA repair can apparently mediate template switches within stretches of microhomology. Moreover, we provide evidence that quadruplication and potentially higher order amplification of a genomic interval can occur in a manner consistent with rolling circle amplification as predicted by the microhomology-mediated break induced replication (MMBIR) model.


Asunto(s)
Duplicación de Gen , Proteína Proteolipídica de la Mielina/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Puntos de Rotura del Cromosoma , Inversión Cromosómica , Dosificación de Gen , Humanos
13.
Ann Hum Genet ; 81(6): 249-257, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28736820

RESUMEN

Variants in the ATL1 gene have been repeatedly described as the second most frequent cause of hereditary spastic paraplegia (HSP), a motor neuron disease manifested by progressive lower limb spasticity and weakness. Variants in ATL1 have been described mainly in patients with early onset HSP. We performed Sanger sequencing of all coding exons and adjacent intron regions of the ALT1 gene in 111 Czech patients with pure form of HSP and additional Multiplex-Ligation Probe Analysis (MLPA) testing targeting the ATL1 gene in 56 of them. All patients except seven were previously tested by Sanger sequencing of the SPAST gene with negative results. ATL1 diagnostic testing revealed only five missense variants in the ATL1 gene. Four of them are novel, but we suppose only two of them to be pathogenic and causal. The remaining variants are assumed to be benign. MLPA testing in 56 of sequence variant negative patients revealed no gross deletion in the ATL1 gene. Variants in the ATL1 gene are more frequent in patients with early onset HSP, but in general the occurrence of pathogenic variants in the ATL1 gene is low in our cohort, less than 4.5% and less than 11.1% in patients with onset before the age of ten. Variants in the ATL1 gene are a less frequent cause of HSP among Czech patients than has been previously reported among other populations.


Asunto(s)
Proteínas de Unión al GTP/genética , Proteínas de la Membrana/genética , Paraplejía Espástica Hereditaria/genética , Adolescente , Niño , República Checa , Análisis Mutacional de ADN , Exones , Femenino , Humanos , Lactante , Intrones , Masculino , Persona de Mediana Edad , Mutación Missense , Linaje , Adulto Joven
14.
J Hum Genet ; 62(3): 431-435, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28003645

RESUMEN

Hereditary motor and sensory neuropathy-type Lom (HMSNL), also known as CMT4D, a demyelinating neuropathy with late-onset deafness is an autosomal recessive disorder threatening Roma population worldwide. The clinical phenotype was reported in several case reports before the gene discovery. HMSNL is caused by a homozygous founder mutation p.Arg148* in the N-Myc downstream-regulated gene 1. Here, we report findings from the Czech Republic, where HMSNL was found in 12 Czech patients from eight families. In these 12 patients, 11 of the causes were due to p.Arg148* mutation inherited from both parents by the autosomal recessive mechanism. But in one case, the recessive mutation was inherited only from one parent (father) and unmasked owing to an uniparental isodisomy of the entire chromosome eight. The inherited peripheral neuropathy owing to an isodisomy of the whole chromosome pointed to an interesting, less frequent possibility of recessive disease and complications with genetic counseling.


Asunto(s)
Proteínas de Ciclo Celular/genética , Enfermedad de Charcot-Marie-Tooth/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Enfermedad de Refsum/genética , Romaní , Disomía Uniparental , Adulto , Edad de Inicio , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/etnología , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Niño , Preescolar , Cromosomas Humanos Par 8/química , República Checa , Sordera/fisiopatología , Femenino , Efecto Fundador , Expresión Génica , Genes Recesivos , Asesoramiento Genético , Genotipo , Humanos , Masculino , Fenotipo , Enfermedad de Refsum/diagnóstico , Enfermedad de Refsum/etnología , Enfermedad de Refsum/fisiopatología
15.
J Neurol Neurosurg Psychiatry ; 88(11): 941-952, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28860329

RESUMEN

BACKGROUND: Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited neuropathy, a debilitating disease without known cure. Among patients with CMT1A, disease manifestation, progression and severity are strikingly variable, which poses major challenges for the development of new therapies. Hence, there is a strong need for sensitive outcome measures such as disease and progression biomarkers, which would add powerful tools to monitor therapeutic effects in CMT1A. METHODS: We established a pan-European and American consortium comprising nine clinical centres including 311 patients with CMT1A in total. From all patients, the CMT neuropathy score and secondary outcome measures were obtained and a skin biopsy collected. In order to assess and validate disease severity and progression biomarkers, we performed qPCR on a set of 16 animal model-derived potential biomarkers in skin biopsy mRNA extracts. RESULTS: In 266 patients with CMT1A, a cluster of eight cutaneous transcripts differentiates disease severity with a sensitivity and specificity of 90% and 76.1%, respectively. In an additional cohort of 45 patients with CMT1A, from whom a second skin biopsy was taken after 2-3 years, the cutaneous mRNA expression of GSTT2, CTSA, PPARG, CDA, ENPP1 and NRG1-Iis changing over time and correlates with disease progression. CONCLUSIONS: In summary, we provide evidence that cutaneous transcripts in patients with CMT1A serve as disease severity and progression biomarkers and, if implemented into clinical trials, they could markedly accelerate the development of a therapy for CMT1A.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/terapia , Progresión de la Enfermedad , Marcadores Genéticos/genética , Piel/patología , Resultado del Tratamiento , Adulto , Anciano , Biopsia , Catepsina A/genética , Enfermedad de Charcot-Marie-Tooth/sangre , Enfermedad de Charcot-Marie-Tooth/genética , Femenino , Glutatión Transferasa/genética , Glicoproteínas/genética , Humanos , Masculino , Persona de Mediana Edad , Neurregulina-1/genética , Proteínas Nucleares , PPAR gamma/genética , Hidrolasas Diéster Fosfóricas/genética , Pronóstico , Pirofosfatasas/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Genética/genética
16.
Hum Mol Genet ; 23(20): 5464-78, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24890387

RESUMEN

Alternative splicing of the proteolipid protein 1 gene (PLP1) produces two forms, PLP1 and DM20, due to alternative use of 5' splice sites with the same acceptor site in intron 3. The PLP1 form predominates in central nervous system RNA. Mutations that reduce the ratio of PLP1 to DM20, whether mutant or normal protein is formed, result in the X-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD). We investigated the ability of sequences throughout PLP1 intron 3 to regulate alternative splicing using a splicing minigene construct transfected into the oligodendrocyte cell line, Oli-neu. Our data reveal that the alternative splice of PLP1 is regulated by a long-distance interaction between two highly conserved elements that are separated by 581 bases within the 1071-base intron 3. Further, our data suggest that a base-pairing secondary structure forms between these two elements, and we demonstrate that mutations of either element designed to destabilize the secondary structure decreased the PLP1/DM20 ratio, while swap mutations designed to restore the structure brought the PLP1/DM20 ratio to near normal levels. Sequence analysis of intron 3 in families with clinical symptoms of PMD who did not have coding-region mutations revealed mutations that segregated with disease in three families. We showed that these patient mutations, which potentially destabilize the secondary structure, also reduced the PLP1/DM20 ratio. This is the first report of patient mutations causing disease by disruption of a long-distance intronic interaction controlling alternative splicing. This finding has important implications for molecular diagnostics of PMD.


Asunto(s)
Empalme Alternativo , Intrones , Proteína Proteolipídica de la Mielina/genética , Enfermedad de Pelizaeus-Merzbacher/genética , ARN Mensajero/química , Emparejamiento Base , Línea Celular , Femenino , Humanos , Masculino , Modelos Moleculares , Mutación , Proteína Proteolipídica de la Mielina/metabolismo , Conformación de Ácido Nucleico , Oligodendroglía/metabolismo , Linaje , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN
17.
Ann Hum Genet ; 80(3): 182-6, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26916081

RESUMEN

We describe a patient with early onset severe axonal Charcot-Marie-Tooth disease (CMT2) with dominant inheritance, in whom Sanger sequencing failed to detect a mutation in the mitofusin 2 (MFN2) gene because of a single nucleotide polymorphism (rs2236057) under the PCR primer sequence. The severe early onset phenotype and the family history with severely affected mother (died after delivery) was very suggestive of CMT2A and this suspicion was finally confirmed by a MFN2 mutation. The mutation p.His361Tyr was later detected in the patient by massively parallel sequencing with a gene panel for hereditary neuropathies. According to this information, new primers for amplification and sequencing were designed which bind away from the polymorphic sites of the patient's DNA. Sanger sequencing with these new primers then confirmed the heterozygous mutation in the MFN2 gene in this patient. This case report shows that massively parallel sequencing may in some rare cases be more sensitive than Sanger sequencing and highlights the importance of accurate primer design which requires special attention.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , GTP Fosfohidrolasas/genética , Proteínas Mitocondriales/genética , Mutación , Polimorfismo de Nucleótido Simple , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Preescolar , Análisis Mutacional de ADN , Cartilla de ADN , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Linaje
18.
J Hum Genet ; 61(10): 845-850, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27334366

RESUMEN

The SPAST gene has a major role in hereditary spastic paraplegias (HSPs). This is the first report mapping characteristics of the SPAST gene in a large cohort of Czech HSP patients. All 17 coding exons of the SPAST gene were Sanger sequenced in 327 patients from 263 independent families with suspected uncomplicated HSP. The selected 126 independent patients, without mutation in the SPAST gene after Sanger sequencing, were subsequently tested by Multiplex Ligation-dependent Probe Amplification (MLPA) assay for large deletions or copy number variations affecting the SPAST gene. Among the 263 independent patients, 35 different, small mutations in 44 patients were found. Twenty-one mutations are novel with the majority of frameshift mutations. Seven mutations were found in more than one family. The age at onset ranged between preschool childhood and the fifth decade with inter- and intra-familiar differences. SPAST small mutations were detected in 16.7% (44/263) of independent tested patients. Mutations in the SPAST gene were found more frequently in familial cases (with affected relatives). Mutation were found in 31.9% (29/91 familial tested) in the familial patient group, whereas in the sporadic patient group, mutations were found in only 4.7% of cases (5/106 sporadic cases). Among SPAST-positive patients, 65.9% (29/44) were familial but only 11.4% (5/44) were sporadic. MLPA testing revealed four large deletions in four independent patients, all in familial-positive cases. Mutations in the SPAST gene are 5.8 × more frequent in familial than in sporadic cases. Large deletions were found only in familial patients. Diagnostic testing of the SPAST gene is useful only in positive family history patients not in sporadic cases.


Asunto(s)
Adenosina Trifosfatasas/genética , Mutación , Paraplejía Espástica Hereditaria/diagnóstico , Paraplejía Espástica Hereditaria/genética , Adolescente , Adulto , Alelos , República Checa , Análisis Mutacional de ADN , Exones , Femenino , Genotipo , Humanos , Intrones , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Polimorfismo Genético , Análisis de Secuencia de ADN , Eliminación de Secuencia , Espastina , Adulto Joven
19.
Brain ; 138(Pt 8): 2161-72, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26072516

RESUMEN

Inherited peripheral neuropathies are a genetically heterogeneous group of disorders characterized by distal muscle weakness and sensory loss. Mutations in genes encoding aminoacyl-tRNA synthetases have been implicated in peripheral neuropathies, suggesting that these tRNA charging enzymes are uniquely important for the peripheral nerve. Recently, a mutation in histidyl-tRNA synthetase (HARS) was identified in a single patient with a late-onset, sensory-predominant peripheral neuropathy; however, the genetic evidence was lacking, making the significance of the finding unclear. Here, we present clinical, genetic, and functional data that implicate HARS mutations in inherited peripheral neuropathies. The associated phenotypic spectrum is broad and encompasses axonal and demyelinating motor and sensory neuropathies, including four young patients presenting with pure motor axonal neuropathy. Genome-wide linkage studies in combination with whole-exome and conventional sequencing revealed four distinct and previously unreported heterozygous HARS mutations segregating with autosomal dominant peripheral neuropathy in four unrelated families (p.Thr132Ile, p.Pro134His, p.Asp175Glu and p.Asp364Tyr). All mutations cause a loss of function in yeast complementation assays, and p.Asp364Tyr is dominantly neurotoxic in a Caenorhabditis elegans model. This study demonstrates the role of HARS mutations in peripheral neuropathy and expands the genetic and clinical spectrum of aminoacyl-tRNA synthetase-related human disease.


Asunto(s)
Ligamiento Genético/genética , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Histidina-ARNt Ligasa/genética , Mutación/genética , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedad de Charcot-Marie-Tooth/genética , Femenino , Humanos , Masculino , Linaje
20.
Eur J Paediatr Neurol ; 48: 17-29, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38008000

RESUMEN

OBJECTIVE: Developmental and epileptic encephalopathies (DEEs) are a group of severe, early-onset epilepsies characterised by refractory seizures, developmental delay, or regression and generally poor prognosis. DEE are now known to have an identifiable molecular genetic basis and are usually examined using a gene panel. However, for many patients, the genetic cause has still not been identified. The aims of this study were to identify causal variants for DEE in patients for whom the previous examination with a gene panel did not determine their genetic diagnosis. It also aims for a detailed description and broadening of the phenotypic spectrum of several rare DEEs. METHODS: In the last five years (2015-2020), 141 patients from all over the Czech Republic were referred to our department for genetic testing in association with their diagnosis of epilepsy. All patients underwent custom-designed gene panel testing prior to enrolment into the study, and their results were inconclusive. We opted for whole exome sequencing (WES) to identify the cause of their disorder. If a causal or potentially causal variant was identified, we performed a detailed clinical evaluation and phenotype-genotype correlation study to better describe the specific rare subtypes. RESULTS: Explanatory causative variants were detected in 20 patients (14%), likely pathogenic variants that explain the epilepsy in 5 patients (3.5%) and likely pathogenic variants that do not fully explain the epilepsy in 11 patients (7.5%), and variants in candidate genes in 4 patients (3%). Variants were mostly de novo 29/40 (72.5%). SIGNIFICANCE: WES enables us to identify the cause of the disease in additional patients, even after gene panel testing. It is very important to perform a WES in DEE patients as soon as possible, since it will spare the patients and their families many years of a diagnostic odyssey. In particular, patients with rare epilepsies might significantly benefit from this approach, and we propose using WES as a new standard in the diagnosis of DEE instead of targeted gene panel testing.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Humanos , Secuenciación del Exoma , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia Generalizada/genética , Pruebas Genéticas , Estudios de Asociación Genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA