Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Ecol ; 31(15): 3999-4016, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35665559

RESUMEN

Switching to a new host plant is a driving force for divergence and speciation in herbivorous insects. This process of incorporating a novel host plant into the diet may require a number of adaptations in the insect herbivores that allow them to consume host plant tissue that may contain toxic secondary chemicals. As a result, herbivorous insects are predicted to have evolved efficient ways to detoxify major plant defences and increase fitness by either relying on their own genomes or by recruiting other organisms such as microbial gut symbionts. In the present study we used parallel metatranscriptomic analyses of Altica flea beetles and their gut symbionts to explore the contributions of beetle detoxification mechanisms versus detoxification by their gut consortium. We compared the gut meta-transcriptomes of two sympatric Altica species that feed exclusively on different host plant species as well as their F1 hybrids that were fed one of the two host plant species. These comparisons revealed that gene expression patterns of Altica are dependent on both beetle species identity and diet. The community structure of gut symbionts was also dependent on the identity of the beetle species, and the gene expression patterns of the gut symbionts were significantly correlated with beetle species and plant diet. Some of the enriched genes identified in the beetles and gut symbionts are involved in the degradation of secondary metabolites produced by plants, suggesting that Altica flea beetles may use their gut microbiota to help them feed on and adapt to their host plants.


Asunto(s)
Escarabajos , Animales , Escarabajos/genética , Herbivoria , Insectos , Plantas , Simbiosis/genética
2.
J Evol Biol ; 35(1): 100-108, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34855267

RESUMEN

Species interactions shape the evolution of traits, life histories and the pattern of speciation. What is less clear is whether certain types of species interaction are more or less likely to lead to phenotypic divergence among species. We used the brood pollination mutualism between yuccas and yucca moths to test how mutualistic (pollination) and antagonistic (oviposition) traits differ in the propensity to increase phenotypic divergence among pollinator moths. We measured traits of the tentacular mouthparts, structures used by females to actively pollinate flowers, as well as ovipositor traits to examine differences in the rate of evolution of these two suites of traits among pollinator species. Morphological analyses revealed two distinct groups of moths based on ovipositor morphology, but no such groupings were identified for tentacle morphology, even for moths that pollinated distantly related yuccas. In addition, ovipositor traits evolved at significantly faster rates than tentacular traits. These results support theoretical work suggesting that antagonism is more likely than mutualism to lead to phenotypic divergence.


Asunto(s)
Mariposas Nocturnas , Yucca , Animales , Flores , Mariposas Nocturnas/anatomía & histología , Mariposas Nocturnas/genética , Oviposición , Polinización , Simbiosis
3.
BMC Genomics ; 22(1): 243, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33827435

RESUMEN

BACKGROUND: Altica (Coleoptera: Chrysomelidae) is a highly diverse and taxonomically challenging flea beetle genus that has been used to address questions related to host plant specialization, reproductive isolation, and ecological speciation. To further evolutionary studies in this interesting group, here we present a draft genome of a representative specialist, Altica viridicyanea, the first Alticinae genome reported thus far. RESULTS: The genome is 864.8 Mb and consists of 4490 scaffolds with a N50 size of 557 kb, which covered 98.6% complete and 0.4% partial insect Benchmarking Universal Single-Copy Orthologs. Repetitive sequences accounted for 62.9% of the assembly, and a total of 17,730 protein-coding gene models and 2462 non-coding RNA models were predicted. To provide insight into host plant specialization of this monophagous species, we examined the key gene families involved in chemosensation, detoxification of plant secondary chemistry, and plant cell wall-degradation. CONCLUSIONS: The genome assembled in this work provides an important resource for further studies on host plant adaptation and functionally affiliated genes. Moreover, this work also opens the way for comparative genomics studies among closely related Altica species, which may provide insight into the molecular evolutionary processes that occur during ecological speciation.


Asunto(s)
Escarabajos , Siphonaptera , Animales , Escarabajos/genética , Evolución Molecular , Genoma , Genómica
4.
J Chem Ecol ; 47(12): 1025-1041, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34506004

RESUMEN

The obligate pollination mutualism between Yucca and yucca moths is a classical example of coevolution. Oviposition and active pollination by female yucca moths occur at night when Yucca flowers are open and strongly scented. Thus, floral volatiles have been suggested as key sensory signals attracting yucca moths to their host plants, but no bioactive compounds have yet been identified. In this study, we showed that both sexes of the pollinator moth Tegeticula yuccasella are attracted to the floral scent of the host Yucca filamentosa. Chemical analysis of the floral headspace from six Yucca species in sections Chaenocarpa and Sarcocarpa revealed a set of novel tetranorsesquiterpenoids putatively derived from (E)-4,8-dimethyl-1,3,7-nonatriene. Their structure elucidation was accomplished by NMR analysis of the crude floral scent sample of Yucca treculeana along with GC/MS analysis and confirmed by total synthesis. Since all these volatiles are included in the floral scent of Y. filamentosa, which has been an important model species for understanding the pollination mutualism, we name these compounds filamentolide, filamentol, filamental, and filamentone. Several of these compounds elicited antennal responses in pollinating (Tegeticula) and non-pollinating (Prodoxus) moth species upon stimulation in electrophysiological recordings. In addition, synthetic (Z)-filamentolide attracted significant numbers of both sexes of two associated Prodoxus species in a field trapping experiment. Highly specialized insect-plant interactions, such as obligate pollination mutualisms, are predicted to be maintained through "private channels" dictated by specific compounds. The identification of novel bioactive tetranorsesquiterpenoids is a first step in testing such a hypothesis in the Yucca-yucca moth interaction.


Asunto(s)
Flores/metabolismo , Mariposas Nocturnas/fisiología , Feromonas/metabolismo , Sesquiterpenos/metabolismo , Yucca/metabolismo , Animales , Femenino
5.
Am J Bot ; 107(5): 833-841, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32329070

RESUMEN

PREMISE: Although polyploidy has been studied since the early 1900s, fundamental aspects of polyploid ecology and evolution remain unexplored. In particular, surprisingly little is known about how newly formed polyploids (neopolyploids) become demographically established. Models predict that most polyploids should go extinct within the first few generations as a result of reproductive disadvantages associated with being the minority in a primarily diploid population (i.e., the minority cytotype principle), yet polyploidy is extremely common. Therefore, a key goal in the study of polyploidy is to determine the mechanisms that promote polyploid establishment in nature. Because premating isolation is critical in order for neopolylpoids to avoid minority cytotype exclusion and thus facilitate establishment, we examined floral morphology and three common premating barriers to determine their importance in generating reproductive isolation of neopolyploids from diploids. METHODS: We induced neopolyploidy in Trifolium pratense and compared their floral traits to the diploid progenitors. In addition to shifts in floral morphology, we examined three premating barriers: isolation by self-fertilization, flowering-time asynchrony, and pollinator-mediated isolation. RESULTS: We found significant differences in the morphology of diploid and neopolyploid flowers, but these changes did not facilitate premating barriers that would generate reproductive isolation of neopolyploids from diploids. There was no difference in flowering phenology, pollinator visitation, or selfing between the cytotypes. CONCLUSIONS: Our results indicate that barriers other than the ones tested in this study-such as geographic isolation, vegetative reproduction, and pistil-stigma incompatibilities-may be more important in facilitating isolation and establishment of neopolyploid T. pratense.


Asunto(s)
Aislamiento Reproductivo , Trifolium , Flores , Duplicación de Gen , Humanos , Polinización , Poliploidía
6.
Am J Bot ; 107(1): 164-170, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31889299

RESUMEN

PREMISE: Variation in pollen-ovule ratios is thought to reflect the degree of pollen transfer efficiency-the more efficient the process, the fewer pollen grains needed. Few studies have directly examined the relationship between pollen-ovule ratio and pollen transfer efficiency. For active pollination in the pollination brood mutualisms of yuccas and yucca moths, figs and fig wasps, senita and senita moths, and leafflowers and leafflower moths, pollinators purposefully collect pollen and place it directly on the stigmatic surface of conspecific flowers. The tight coupling of insect reproductive interests with pollination of the flowers in which larvae develop ensures that pollination is highly efficient. METHODS: We used the multiple evolutionary transitions between passive pollination and more efficient active pollination to test if increased pollen transfer efficiency leads to reduced pollen-ovule ratios. We collected pollen and ovule data from a suite of plant species from each of the pollination brood mutualisms and used phylogenetically controlled tests and sister-group comparisons to examine whether the shift to active pollination resulted in reduced pollen-ovule ratios. RESULTS: Across all transitions between passive and active pollination in plants, actively pollinated plants had significantly lower pollen-ovule ratios than closely related passively pollinated taxa. Phylogenetically corrected comparisons demonstrated that actively pollinated plant species had an average 76% reduction in the pollen-ovule ratio. CONCLUSIONS: The results for active pollination systems support the general utility of pollen-ovule ratios as indicators of pollination efficiency and the central importance of pollen transfer efficiency in the evolution of pollen-ovule ratio.


Asunto(s)
Óvulo Vegetal , Polinización , Animales , Flores , Polen , Simbiosis
7.
Microb Ecol ; 80(4): 946-959, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32880699

RESUMEN

Host plant shifts are a common mode of speciation in herbivorous insects. Although insects can evolve adaptations to successfully incorporate a new host plant, it is becoming increasingly recognized that the gut bacterial community may play a significant role in allowing insects to detoxify novel plant chemical defenses. Here, we examined differences in gut bacterial communities between Altica flea beetle species that feed on phylogenetically unrelated host plants in sympatry. We surveyed the gut bacterial communities of three closely related flea beetles from multiple locations using 16S rRNA amplicon sequencing. The results showed that the beetle species shared a high proportion (80.7%) of operational taxonomic units. Alpha-diversity indicators suggested that gut bacterial diversity did not differ among host species, whereas geography had a significant effect on bacterial diversity. In contrast, analyses of beta-diversity showed significant differences in gut bacterial composition among beetle species when we used species composition and relative abundance metrics, but there was no difference in composition when species presence/absence and phylogenetic distance indices were used. Within host beetle species, gut bacterial composition varied significantly among sites. A metagenomic functionality analysis predicted that the gut microbes had functions involved in xenobiotic biodegradation and metabolism as well as metabolism of terpenoids and polyketides. These predictions, however, did not differ among beetle host species. Antibiotic curing experiments showed that development time was significantly prolonged, and there was a significant decline in body weight of newly emerged adults in beetles lacking gut bacteria, suggesting the beetles may receive a potential benefit from the gut microbe-insect interaction. On the whole, our results suggest that although the gut bacterial community did not show clear host-specific patterns among Altica species, spatiotemporal variability is an important determinant of gut bacterial communities. Furthermore, the similarity of communities among these beetle species suggests that microbial facilitation may not be a determinant of host plant shifts in Altica.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Escarabajos/microbiología , Microbioma Gastrointestinal , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Escarabajos/fisiología , Femenino , Masculino , Metagenoma , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis
8.
Am J Bot ; 106(6): 894-900, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31162645

RESUMEN

PREMISE: Polyploidy is known to cause physiological changes in plants which, in turn, can affect species interactions. One major physiological change predicted in polyploid plants is a heightened demand for growth-limiting nutrients. Consequently, we expect polyploidy to cause an increased reliance on the belowground mutualists that supply these growth-limiting nutrients. An important first step in investigating how polyploidy affects nutritional mutualisms in plants, then, is to characterize differences in the rate at which diploids and polyploids interact with belowground mutualists. METHODS: We used Heuchera cylindrica (Saxifragaceae) to test how polyploidy influences interactions with arbuscular mycorrhizal fungi (AMF). Here we first confirmed the presence of AMF in H. cylindrica, and then we used field-collected specimens to quantify and compare the presence of AMF structures while controlling for site-specific variation. RESULTS: Tetraploids had higher colonization rates as measured by total, hyphal, and nutritional-exchange structures; however, we found that diploids and tetraploids did not differ in vesicle colonization rates. CONCLUSIONS: The results suggest that polyploidy may alter belowground nutritional mutualisms with plants. Because colonization by nutritional-exchange structures was higher in polyploids but vesicle colonization was not, polyploids might form stronger associations with their AMF partners. Controlled experiments are necessary to test whether this pattern is driven by the direct effect of polyploidy on AMF colonization.


Asunto(s)
Heuchera/genética , Micorrizas/fisiología , Poliploidía , Simbiosis , Heuchera/microbiología , Heuchera/fisiología , Fenómenos Fisiológicos de las Plantas/genética , Simbiosis/genética
9.
Am J Bot ; 106(3): 469-476, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30901499

RESUMEN

PREMISE OF THE STUDY: Polyploidy, or whole genome duplication (WGD), is common in plants despite theory suggesting that polyploid establishment is challenging and polyploids should be evolutionarily transitory. There is renewed interest in understanding the mechanisms that could facilitate polyploid establishment and explain their pervasiveness in nature. In particular, premating isolation from their diploid progenitors is suggested to be a crucial factor. To evaluate how changes in assortative mating occur, we need to understand the phenotypic effects of WGD on reproductive traits. METHODS: We used literature surveys and a meta-analysis to assess how WGD affects floral morphology, flowering phenology, and reproductive output in plants. We focused specifically on comparisons of newly generated polyploids (neopolyploids) and their parents to mitigate potential confounding effects of adaptation and drift that may be present in ancient polyploids. KEY RESULTS: The results indicated that across a broad representation of angiosperms, floral morphology traits increased in size, reproductive output decreased, and flowering phenology was unaffected by WGD. Additionally, we found that increased trait variation after WGD was uncommon for the phenotypic traits examined. CONCLUSIONS: Our results suggest that the phenotypic effects on traits important to premating isolation of neopolyploids are small, in general. Changes in flowering phenology, reproductive output, and phenotypic variation resulting from WGD may be less critical in facilitating premating isolation and neopolyploid establishment. However, floral traits for which size is an important component of function (e.g., pollen transfer) could be strongly influenced by WGD.


Asunto(s)
Flores/fisiología , Duplicación de Gen , Magnoliopsida/fisiología , Flores/genética , Flores/crecimiento & desarrollo , Magnoliopsida/genética , Magnoliopsida/crecimiento & desarrollo , Reproducción/fisiología
10.
J Chem Ecol ; 45(1): 46-49, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30535939

RESUMEN

The hydrocarbon pattern in the floral scent of Yucca species was found to comprise a group of unbranched, mid-chain alkanes, alkenes, and an alkadiene. In Y. reverchonii, highly dominant (Z)-8-heptadecene is accompanied by (6Z,9Z)-6,9-heptadecadiene and heptadecane as minor components and by traces of other saturated and unsaturated hydrocarbons with similar chain length. Some of these volatiles proved to be perceived by the antennae of Tegeticula cassandra (pollinating seed-eater of Yucca) and Prodoxus decipiens (herbivore on Yucca). The possible biosynthesis of the compounds is discussed.


Asunto(s)
Alcadienos/metabolismo , Alcanos/metabolismo , Alquenos/metabolismo , Flores/metabolismo , Yucca/metabolismo , Alcadienos/análisis , Alcanos/análisis , Alquenos/análisis , Flores/química , Yucca/química
11.
New Phytol ; 215(1): 57-69, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28418074

RESUMEN

Contents 57 I. 57 II. 59 III. 59 IV. 63 V. 64 VI. 64 VII. 66 66 References 66 SUMMARY: Whole-genome duplication (WGD), or polyploidy, has important effects on the genotype and phenotype of plants, potentially altering ecological interactions with other organisms. Even though the connections between polyploidy and species interactions have been recognized for some time, we are only just beginning to test whether WGD affects community context. Here I review the sparse information on polyploidy and community context and then present a set of hypotheses for future work. Thus far, community-level studies of polyploids suggest an array of outcomes, from no changes in community context to shifts in the abundance and composition of interacting species. I propose a number of mechanisms for how WGD could alter community context and how the emergence of polyploids in populations could also alter the community context of parental diploids and other plant species. Resolving how and when these changes are expected to occur will require a deeper understanding of the connections among WGD, phenotypic changes, and the direct and indirect effects of species interactions.


Asunto(s)
Ecosistema , Genoma de Planta , Plantas/genética , Evolución Biológica , Evolución Molecular , Duplicación de Gen , Genotipo , Poliploidía
12.
Am J Bot ; 103(7): 1326-35, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27370313

RESUMEN

Polyploidy is a common mode of speciation that can have far-reaching consequences for plant ecology and evolution. Because polyploidy can induce an array of phenotypic changes, there can be cascading effects on interactions with other species. These interactions, in turn, can have reciprocal effects on polyploid plants, potentially impacting their establishment and persistence. Although there is a wealth of information on the genetic and phenotypic effects of polyploidy, the study of species interactions in polyploid plants remains a comparatively young field. Here we reviewed the available evidence for how polyploidy may impact many types of species interactions that range from mutualism to antagonism. Specifically, we focused on three main questions: (1) Does polyploidy directly cause the formation of novel interactions not experienced by diploids, or does it create an opportunity for natural selection to then form novel interactions? (2) Does polyploidy cause consistent, predictable changes in species interactions vs. the evolution of idiosyncratic differences? (3) Does polyploidy lead to greater evolvability in species interactions? From the scarce evidence available, we found that novel interactions are rare but that polyploidy can induce changes in pollinator, herbivore, and pathogen interactions. Although further tests are needed, it is likely that selection following whole-genome duplication is important in all types of species interaction and that there are circumstances in which polyploidy can enhance the evolvability of interactions with other species.


Asunto(s)
Abejas/fisiología , Genoma de Planta/genética , Plantas/genética , Poliploidía , Selección Genética , Animales , Evolución Biológica , Diploidia , Flores/genética , Flores/fisiología , Interacciones Huésped-Patógeno , Fenómenos Fisiológicos de las Plantas , Polinización , Dispersión de Semillas
13.
Am Nat ; 186(2): 176-86, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26655147

RESUMEN

Covariation among organismal traits is nearly universal, occurring both within and among species (static and evolutionary allometry, respectively). If conserved developmental processes produce similarity in static and evolutionary allometry, then when species differ in development, it should be expressed in discordance between allometries. Here, we investigate whether rapidly evolving developmental processes result in discordant static and evolutionary allometries attributable to trade-offs in resource acquisition, allocation, or growth across 30 species of aquatic beetles. The highly divergent sperm phenotypes of these beetles might be an important contributor to allometric evolution of testis and accessory gland mass through altered requirements for the production of sperm and seminal fluids. We documented extensive discordance between static and evolutionary allometries, indicating that allometric relationships are flexibly modified over short time periods but subject to constraint over longer time spans. Among species, sperm phenotype did not influence relative investment in accessory glands but was weakly associated with investment in testes. Furthermore, except when sperm were long and simple, sperm phenotype was not associated with species-specific modification of the allometry of testis/accessory gland mass and body size. Our results demonstrate the utility of allometric discordance to infer species differences in the provisioning and growth of concurrently developing traits.


Asunto(s)
Evolución Biológica , Escarabajos/anatomía & histología , Escarabajos/crecimiento & desarrollo , Espermatozoides/citología , Testículo/anatomía & histología , Animales , Tamaño Corporal , Genitales Masculinos/anatomía & histología , Genitales Masculinos/crecimiento & desarrollo , Masculino , Fenotipo , Selección Genética , Testículo/crecimiento & desarrollo
14.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26378220

RESUMEN

Host shifts and subsequent adaption to novel host plants are important drivers of speciation among phytophagous insects. However, there is considerably less evidence for host plant-mediated speciation in the absence of a host shift. Here, we investigated divergence of two sympatric sister elm leaf beetles, Pyrrhalta maculicollis and P. aenescens, which feed on different age classes of the elm Ulmus pumila L. (seedling versus adult trees). Using a field survey coupled with preference and performance trials, we show that these beetle species are highly divergent in both feeding and oviposition preference and specialize on either seedling or adult stages of their host plant. An experiment using artificial leaf discs painted with leaf surface wax extracts showed that host plant chemistry is a critical element that shapes preference. Specialization appears to be driven by adaptive divergence as there was also evidence of divergent selection; beetles had significantly higher survival and fecundity when reared on their natal host plant age class. Together, the results identify the first probable example of divergence induced by host plant age, thus extending how phytophagous insects might diversify in the absence of host shifts.


Asunto(s)
Adaptación Fisiológica , Escarabajos/fisiología , Conducta Alimentaria , Oviposición , Animales , Escarabajos/crecimiento & desarrollo , Femenino , Masculino , Hojas de la Planta/química , Plantones , Especificidad de la Especie , Simpatría , Árboles , Ulmus
15.
Proc Natl Acad Sci U S A ; 109(12): 4538-43, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22323584

RESUMEN

The coevolution of female mate preferences and exaggerated male traits is a fundamental prediction of many sexual selection models, but has largely defied testing due to the challenges of quantifying the sensory and cognitive bases of female preferences. We overcome this difficulty by focusing on postcopulatory sexual selection, where readily quantifiable female reproductive tract structures are capable of biasing paternity in favor of preferred sperm morphologies and thus represent a proximate mechanism of female mate choice when ejaculates from multiple males overlap within the tract. Here, we use phylogenetically controlled generalized least squares and logistic regression to test whether the evolution of female reproductive tract design might have driven the evolution of complex, multivariate sperm form in a family of aquatic beetles. The results indicate that female reproductive tracts have undergone extensive diversification in diving beetles, with remodeling of size and shape of several organs and structures being significantly associated with changes in sperm size, head shape, gains/losses of conjugation and conjugate size. Further, results of Bayesian analyses suggest that the loss of sperm conjugation is driven by elongation of the female reproductive tract. Behavioral and ultrastructural examination of sperm conjugates stored in the female tract indicates that conjugates anchor in optimal positions for fertilization. The results underscore the importance of postcopulatory sexual selection as an agent of diversification.


Asunto(s)
Evolución Biológica , Escarabajos/fisiología , Genitales Femeninos/fisiología , Espermatozoides/fisiología , Animales , Teorema de Bayes , Femenino , Masculino , Microscopía Electrónica de Transmisión/métodos , Modelos Biológicos , Análisis Multivariante , Filogenia , Análisis de Regresión , Factores Sexuales
16.
Am J Bot ; 100(3): 496-508, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23400493

RESUMEN

PREMISE OF THE STUDY: Polyploidization is a key factor involved in the diversification of plants. Although polyploids are commonly found, there remains controversy on the mechanisms that lead to their successful establishment. One major problem that has been identified is that newly formed polyploids lack mates of the appropriate ploidy level and may experience severely reduced fertility due to nonproductive intercytotype crosses. Niche differentiation has been proposed as a primary mechanism that can alleviate this reproductive disadvantage and facilitate polyploid establishment. Here we test whether the establishment of tetraploid cytotypes of Heuchera cylindrica (Saxifragaceae) is consistent with climatic niche differentiation. • METHODS: We use a combination of field surveys, flow cytometry and species distribution models to: (1) examine the distribution of diploid and tetraploid cytotypes; and (2) determine whether tetraploid Heuchera cylindrica occupy climates that differ from those of its diploid progenitors. • KEY RESULTS: The geographic distributions of diploid and tetraploid cytotypes are largely allopatric as an extensive survey of 636 plants from 43 locations failed to detect any populations with both cytotypes. Although diploids and tetraploids occur in different geographic areas, polyploid Heuchera cylindrica occur almost exclusively in environments that are predicted to be suitable to diploid populations. • CONCLUSIONS: Climatic niche differentiation does not explain the geographic distribution of tetraploid Heuchera cylindrica. We propose instead that tetraploid lineages were able to establish by taking advantage of glacial retreat and expanding into previously unoccupied sites.


Asunto(s)
Clima , Heuchera/genética , Poliploidía , Área Bajo la Curva , Canadá , Geografía , Modelos Biológicos , Especificidad de la Especie , Tetraploidía , Estados Unidos
17.
Oecologia ; 173(4): 1345-54, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23836090

RESUMEN

Florivores are present in many pollination systems and can have direct and indirect effects on both plants and pollinators. Although the impact of florivores are commonly examined in facultative pollination mutualisms, their effects on obligate mutualism remain relatively unstudied. Here, we used experimental manipulations and surveys of naturally occurring plants to assess the effect of florivory on the obligate pollination mutualism between yuccas and yucca moths. Yucca filamentosa (Agavaceae) is pollinated by the moth Tegeticula cassandra (Lepidoptera: Prodoxidae), and the mutualism also attracts two florivores: a generalist, the leaf-footed bug Leptoglossus phyllopus (Hemiptera: Coreidae), and a specialist, the beetle Hymenorus densus (Coleoptera: Tenebrionidae). Experimental manipulations of leaf-footed bug densities on side branches of Y. filamentosa inflorescences demonstrated that feeding causes floral abscission but does not reduce pollen or seed production in the remaining flowers. Similar to the leaf-footed bugs, experimental manipulations of beetle densities within individual flowers demonstrated that beetle feeding also causes floral abscission, but, in addition, the beetles also cause a significant reduction in pollen availability. Path analyses of phenotypic selection based on surveys of naturally occurring plants revealed temporal variation in the plant traits important to plant fitness and the effects of the florivores on fitness. Leaf-footed bugs negatively impacted fitness when fewer plants were flowering and leaf-footed bug density was high, whereas beetles had a positive effect on fitness when there were many plants flowering and their densities were low. This positive effect was likely due to adult beetles consuming yucca moth eggs while having a negligible effect on floral abscission. Together, the actions of both florivores either augmented the relationship of plant traits and fitness or slightly weakened the relationship. Overall, the results suggest that, although florivores are always present during flowering, the impact of florivores on phenotypic selection in yuccas is strongly mitigated by changes in their densities on plants from year to year. In contrast, both florivores consistently influenced pollinator larval mortality through floral abscission, and H. densus beetles additionally via the consumption of pollinator eggs.


Asunto(s)
Herbivoria , Mariposas Nocturnas/fisiología , Reproducción/fisiología , Simbiosis , Yucca/fisiología , Animales , Escarabajos/fisiología , Flores/fisiología , Hemípteros/fisiología , Larva , Fenotipo , Polen , Polinización , Densidad de Población , Semillas
18.
Mycorrhiza ; 23(3): 243-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23179901

RESUMEN

Although a number of factors have predictable effects on mycorrhizal colonization, determining generalized patterns for some variables have remained elusive. In particular, fire has been identified as a major event that may influence plant-mycorrhiza interactions, yet efforts to date have yielded contradictory results. Here, we assess the impact of fire on mycorrhizal colonization in Palafoxia feayi, a plant commonly found in the fireswept, nutrient-poor scrub community of central Florida. We determined soil nutrient conditions and percent colonization patterns for plants growing in replicate plots that were burned 1 to 15 years previously. The results showed a negative relationship between mycorrhizal colonization and time since fire, but there was no effect of fire return interval (lapsed time between successive fires). Soil nutrient analyses corroborated previous studies and showed no change in soil nutrients following fire. In contrast to previous studies of mycorrhizal colonization in Florida scrub, we conclude that fire can affect arbuscular mycorrhizal fungi colonization and we speculate that this is mediated by light availability.


Asunto(s)
Asteraceae/microbiología , Ecosistema , Incendios , Micorrizas/fisiología , Suelo/química , Microbiología del Suelo , Simbiosis
19.
Ecology ; 104(7): e4054, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37082928

RESUMEN

Functional traits fall along a continuum from resource conservative to acquisitive and are powerful predictors of the ecological settings necessary for a species to persist and establish. As a consequence, a major problem that functional trait analysis could address is understanding the ecological contexts necessary for the persistence of polyploid plants, because early generation polyploids, or "neopolyploids," are at a high extinction risk. Because neopolyploidy could increase nutrient limitation, growth strategies should shift to accommodate the increased need for resources, but this prediction is untested. To address this gap, we compared the functional trait responses of diploids, synthetic neotetraploids, and naturally occurring tetraploids of Heuchera cylindrica, an herbaceous perennial plant, to nutrient manipulations in a greenhouse experiment. We found strong support for the hypothesis that neotetraploidy increases nutrient requirements, as evidenced by reduced productivity and increased tissue concentrations of nitrogen and phosphorus in neotetraploids. We also found that the repeated formation of independent origins of neotetraploidy led to differing responses to nutrient supply, but neotetraploidy generally shifted functional traits to be more resource acquisitive and inefficient. Taken together, our results suggest that shifts in functional trait responses may constrain the ability of neopolyploids to establish in nutrient-poor habitats.


Asunto(s)
Heuchera , Poliploidía , Tetraploidía , Fenotipo , Ecosistema , Plantas
20.
Mol Phylogenet Evol ; 62(3): 898-906, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22178365

RESUMEN

Coevolution is thought to be especially important in diversification of obligate mutualistic interactions such as the one between yuccas and pollinating yucca moths. We took a three-step approach to examine if plant and pollinator speciation events were likely driven by coevolution. First, we tested whether there has been co-speciation between yuccas and pollinator yucca moths in the genus Tegeticula (Prodoxidae). Second, we tested whether co-speciation also occurred between yuccas and commensalistic yucca moths in the genus Prodoxus (Prodoxidae) in which reciprocal evolutionary change is unlikely. Finally, we examined the current range distributions of yuccas in relationship to pollinator speciation events to determine if plant and moth speciation events likely occurred in sympatry or allopatry. Co-speciation analyses of yuccas with their coexisting Tegeticula pollinator and commensalistic Prodoxus lineages demonstrated phylogenetic congruence between both groups of moths and yuccas, even though moth lineages differ in the type of interaction with yuccas. Furthermore, Yucca species within a lineage occur primarily in allopatry rather than sympatry. We conclude that biogeographic factors are the overriding force in plant and pollinator moth speciation and significant phylogenetic congruence between the moth and plant lineages is likely due to shared biogeography rather than coevolution.


Asunto(s)
Evolución Biológica , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/genética , Simbiosis , Yucca/clasificación , Yucca/genética , Animales , ADN Mitocondrial , Filogenia , Filogeografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA