RESUMEN
BACKGROUND: An accurate, rapid, non-sputum-based triage test for diagnosing tuberculosis (TB) is needed. METHODS: A prospective evaluation of the Xpert-MTB-HR cartridge, a prototype blood-based host-response mRNA signature assay, among individuals presenting with TB-like symptoms was performed in Pakistan and results were compared to three reference standards: Xpert MTB/RIF Ultra, bacteriological confirmation (Xpert MTB/RIF Ultra and/or culture positivity), and composite clinical diagnosis (clinician diagnosis, treatment initiation, Xpert MTB/RIF Ultra, and/or culture positivity). Analyses were conducted both for the entire study cohort and separately in the adolescent and young adult cohort (ages 10-24). RESULTS: A total of 497 participants, ages 6-83, returned valid Xpert-MTB-HR results. When a diagnostic threshold was set for a sensitivity of >90%, specificity was 32% (95%CI 28-37) when compared to Xpert MTB/RIF Ultra, 29% (95%CI 25-34) when compared to a bacteriological confirmation, and 22% (95%CI 18-26) when compared to a composite clinical diagnosis. However, when evaluating only the adolescent and young adult cohort with a diagnostic threshold set for sensitivity of >90%, specificity was 82% (95%CI 74-89) when compared to Xpert MTB/RIF Ultra, 84% (95%CI 75-90) when compared to a bacteriological confirmation, and 54% (95%CI 44-64) when compared to a composite clinical diagnosis. CONCLUSIONS: While the Xpert-MTB-HR does not meet World Health Organization minimum criteria in the general population, in our study it does meet the minimum sensitivity and specificity requirements for a non-sputum-based triage test among adolescents and young adults when compared to Xpert MTB/RIF Ultra or bacteriological confirmation.
RESUMEN
While the goal of universal drug susceptibility testing has been a key component of the WHO End TB Strategy, in practice, this remains inaccessible to many. Rapid molecular tests for tuberculosis (TB) and antituberculosis drug resistance could significantly improve access to testing. In this study, we evaluated the accuracy of the Akonni Biosystems XDR-TB (extensively drug-resistant TB) TruArray and lateral-flow-cell (XDR-LFC) assay (Akonni Biosystems, Inc., Frederick, MD, USA), a novel assay that detects mutations in seven genes associated with resistance to antituberculosis drugs: katG, the inhA promoter, and the ahpC promoter for isoniazid; rpoB for rifampin; gyrA for fluoroquinolones; rrs and the eis promoter for kanamycin; and rrs for capreomycin and amikacin. We evaluated assay performance using direct sputum samples from 566 participants recruited in a prospective cohort in Moldova over 2 years. The sensitivity and specificity against the phenotypic reference were both 100% for isoniazid, 99.2% and 97.9% for rifampin, 84.8% and 99.1% for fluoroquinolones, 87.0% and 84.1% for kanamycin, 54.3% and 100% for capreomycin, and 79.2% and 100% for amikacin, respectively. Whole-genome sequencing data for a subsample of 272 isolates showed 95 to 99% concordance with the XDR-LFC-reported suspected mutations. The XDR-LFC assay demonstrated a high level of accuracy for multiple drugs and met the WHO's minimum target product profile criteria for isoniazid and rifampin, while the sensitivity for fluoroquinolones and amikacin fell below target thresholds, likely due to the absence of a gyrB target in the assay. With optimization, the XDR-LFC shows promise as a novel near-patient technology to rapidly diagnose drug-resistant tuberculosis.
Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Kanamicina , Isoniazida/farmacología , Capreomicina , Amicacina/farmacología , Rifampin/farmacología , Fluoroquinolonas/farmacología , Pruebas de Sensibilidad Microbiana , Estudios Prospectivos , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/diagnóstico , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológicoRESUMEN
BACKGROUND: To analyze the influence of the COVID-19 pandemic on the process of diagnosis and monitoring of drug-resistant pulmonary tuberculosis (TB) cases reported in the state of Paraná, Brazil, from 2015 to 2020. METHODS: Ecological study with quantitative approach. This study was based on diagnosed cases of pulmonary TB reported in the Notifiable Disease Information System in residents of Paraná; as well as through the number of confirmed cases of COVID-19 in the state epidemiological bulletin for the year 2020. The study data were analyzed using descriptive statistics. RESULTS: It was found that, although the number of reported pulmonary TB cases (drug-resistant and general) increased between 2015 and 2019, there was a drop in notification in 2020, the first year of the COVID-19 pandemic. The notification of TB cases was also influenced monthly during the year according to the increase in the number of COVID-19 cases. For cases of drug-resistant pulmonary TB, the provision of diagnostic tests and Directly Observed Treatment decreased by more than half in 2020, especially when compared to 2019. CONCLUSIONS: In view of these findings, the influence of COVID-19 on the diagnosis and monitoring of drug-resistant and general pulmonary TB cases is evident, showing that the pandemic has compromised the advances of recent decades in achieving the goals established for its eradication by 2035.
Asunto(s)
COVID-19 , Tuberculosis Miliar , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis Pulmonar , Humanos , Pandemias , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/epidemiología , Notificación de EnfermedadesRESUMEN
BACKGROUND: Detection of tuberculosis disease (TB) and timely identification of Mycobacterium tuberculosis (Mtb) strains that are resistant to treatment are key to halting tuberculosis transmission, improving treatment outcomes, and reducing mortality. METHODS: We used 332,657 Xpert MTB/RIF assay results, captured as part of the Myanmar Data Utilization Project, to characterize Mtb test positivity and rifampicin resistance by both age and sex, and to evaluate risk factors associated with rifampicin resistance. RESULTS: Overall, 70% of individuals diagnosed with TB were males. Test positivity was higher among males (47%) compared to females (39%). The highest positivity by age occurred among individuals aged 16-20, with test positivity for females (65%) higher than for males (57%). Although a greater absolute number of males were rifampicin resistant, a greater proportion of females (11.4%) were rifampicin resistant as compared to males (9.3%). In the multivariate model, history of previous treatment, age less than 30, testing in the Yangon region, and female sex were significantly positively associated with rifampicin resistance after adjusting for HIV status and year test was performed. CONCLUSIONS: Our results indicate that young adults were more likely to test positive for TB and be identified as rifampicin resistant compared to older adults.
Asunto(s)
Antibióticos Antituberculosos , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis Pulmonar , Tuberculosis , Anciano , Antibióticos Antituberculosos/farmacología , Antibióticos Antituberculosos/uso terapéutico , Farmacorresistencia Bacteriana/efectos de los fármacos , Femenino , Humanos , Masculino , Mianmar/epidemiología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Rifampin/farmacología , Sensibilidad y Especificidad , Distribución por Sexo , Tuberculosis/tratamiento farmacológico , Tuberculosis/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Pulmonar/tratamiento farmacológico , Adulto JovenRESUMEN
Despite the WHO's call for universal drug susceptibility testing for all patients being evaluated for tuberculosis (TB), a lack of rapid diagnostic tests which can fully describe TB resistance patterns is a major challenge in ensuring that all persons diagnosed with drug-resistant TB are started on an appropriate treatment regime. We evaluated the accuracy of the Akonni Biosystems XDR-TB TruArray and lateral-flow cell (XDR-LFC), a novel multiplex assay to simultaneously detect mutations across seven genes that confer resistance to both first- and second-line anti-TB drugs. The XDR-LFC includes 271 discrete three-dimensional gel elements with target-specific probes for identifying mutations in katG, inhA promoter, and ahpC promoter (isoniazid), rpoB (rifampin), gyrA (fluoroquinolones), rrs and eis promoter (kanamycin), and rrs (capreomycin and amikacin). We evaluated XDR-LFC performance with 87 phenotypically and genotypically characterized clinical Mycobacterium tuberculosis isolates. The overall assay levels of accuracy for mutation detection in specific genes were 98.6% for eis promoter and 100.0% for the genes katG, inhA promoter, ahpC promoter, rpoB, gyrA, and rrs The sensitivity and specificity against phenotypic reference were 100% and 100% for isoniazid, 98.4% and 50% for rifampin (specificity increased to 100% once the strains with documented low-level resistance mutations in rpoB were excluded), 96.2% and 100% for fluoroquinolones, 92.6% and 100% for kanamycin, 93.9% and 97.4% for capreomycin, and 80% and 100% for amikacin. The XDR-LFC solution appears to be a promising new tool for accurate detection of resistance to both first- and second-line anti-TB drugs.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple , Humanos , Laboratorios , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológicoRESUMEN
BACKGROUND: Accurate, comprehensive, and timely detection of drug-resistant tuberculosis (TB) is essential to inform patient treatment and enable public health surveillance. This is crucial for effective control of TB globally. Whole-genome sequencing (WGS) and targeted next-generation sequencing (NGS) approaches have potential as rapid in vitro diagnostics (IVDs), but the complexity of workflows, interpretation of results, high costs, and vulnerability of instrumentation have been barriers to broad uptake outside of reference laboratories, especially in low- and middle-income countries. A new, solid-state, tabletop sequencing instrument, Illumina iSeq100, has the potential to decentralize NGS for individual patient care. METHODS AND FINDINGS: In this study, we evaluated WGS and targeted NGS for TB on both the new iSeq100 and the widely used MiSeq (both manufactured by Illumina) and compared sequencing performance, costs, and usability. We utilized DNA libraries produced from Mycobacterium tuberculosis clinical isolates for the evaluation. We conducted WGS on three strains and observed equivalent uniform genome coverage with both platforms and found the depth of coverage obtained was consistent with the expected data output. Utilizing the standardized, cloud-based ReSeqTB bioinformatics pipeline for variant analysis, we found the two platforms to have 94.0% (CI 93.1%-94.8%) agreement, in comparison to 97.6% (CI 97%-98.1%) agreement for the same libraries on two MiSeq instruments. For the targeted NGS approach, 46 M. tuberculosis-specific amplicon libraries had 99.6% (CI 98.0%-99.9%) agreement between the iSeq100 and MiSeq data sets in drug resistance-associated SNPs. The upfront capital costs are almost 5-fold lower for the iSeq100 ($19,900 USD) platform in comparison to the MiSeq ($99,000 USD); however, because of difference in the batching capabilities, the price per sample for WGS was higher on the iSeq100. For WGS of M. tuberculosis at the minimum depth of coverage of 30x, the cost per sample on the iSeq100 was $69.44 USD versus $28.21 USD on the MiSeq, assuming a 2 × 150 bp run on a v3 kit. In terms of ease of use, the sequencing workflow of iSeq100 has been optimized to only require 27 minutes total of hands-on time pre- and post-run, and the maintenance is simplified by a single-use cartridge-based fluidic system. As these are the first sequencing attempts on the iSeq100 for M. tuberculosis, the sequencing pool loading concentration still needs optimization, which will affect sequencing error and depth of coverage. Additionally, the costs are based on current equipment and reagent costs, which are subject to change. CONCLUSIONS: The iSeq100 instrument is capable of running existing TB WGS and targeted NGS library preparations with comparable accuracy to the MiSeq. The iSeq100 has reduced sequencing workflow hands-on time and is able to deliver sequencing results in <24 hours. Reduced capital and maintenance costs and lower-throughput capabilities also give the iSeq100 an advantage over MiSeq in settings of individualized care but not in high-throughput settings such as reference laboratories, where sample batching can be optimized to minimize cost at the expense of workflow complexity and time.
Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Mycobacterium tuberculosis/genética , Análisis de Secuencia de ADN , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Análisis Costo-Beneficio , ADN Bacteriano/análisis , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/economía , Análisis de Secuencia de ADN/instrumentación , Análisis de Secuencia de ADN/métodos , Factores de TiempoRESUMEN
Clinical phenotypic fluoroquinolone susceptibility testing of Mycobacterium tuberculosis is currently based on M. tuberculosis growth at a single critical concentration, which provides limited information for a nuanced clinical response. We propose using specific resistance-conferring M. tuberculosis mutations in gyrA together with population pharmacokinetic and pharmacodynamic modeling as a novel tool to better inform fluoroquinolone treatment decisions. We sequenced the gyrA resistance-determining region of 138 clinical M. tuberculosis isolates collected from India, Moldova, Philippines, and South Africa and then determined each strain's MIC against ofloxacin, moxifloxacin, levofloxacin, and gatifloxacin. Strains with specific gyrA single-nucleotide polymorphisms (SNPs) were grouped into high or low drug-specific resistance categories based on their empirically measured MICs. Published population pharmacokinetic models were then used to explore the pharmacokinetics and pharmacodynamics of each fluoroquinolone relative to the empirical MIC distribution for each resistance category to make predictions about the likelihood of patients achieving defined therapeutic targets. In patients infected with M. tuberculosis isolates containing SNPs associated with a fluoroquinolone-specific low-level increase in MIC, models suggest increased fluoroquinolone dosing improved the probability of achieving therapeutic targets for gatifloxacin and moxifloxacin but not for levofloxacin and ofloxacin. In contrast, among patients with isolates harboring SNPs associated with a high-level increase in MIC, increased dosing of levofloxacin, moxifloxacin, gatifloxacin, or ofloxacin did not meaningfully improve the probability of therapeutic target attainment. We demonstrated that quantifiable fluoroquinolone drug resistance phenotypes could be predicted from rapidly detectable gyrA SNPs and used to support dosing decisions based on the likelihood of patients reaching therapeutic targets. Our findings provide further supporting evidence for the moxifloxacin clinical breakpoint recently established by the World Health Organization.
Asunto(s)
Antituberculosos/farmacología , Fluoroquinolonas/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Gatifloxacina/farmacología , Levofloxacino/farmacología , Pruebas de Sensibilidad Microbiana , Moxifloxacino/farmacología , Mycobacterium tuberculosis/genética , Ofloxacino/farmacología , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
BACKGROUND: Previous retrospective and in vitro studies suggest that use of later-generation fluoroquinolones may reduce mortality risk and improve treatment outcomes for drug-resistant tuberculosis (TB) patients, including individuals resistant to a fluoroquinolone. Meta-analysis results are mixed and few studies have examined this relationship prospectively. METHODS: As part of a comparative diagnostic study, we conducted a prospective cohort study with 834 Mycobacterium tuberculosis-infected patients from selected hospitals and clinics with high prevalence of drug-resistant TB in India, Moldova, and South Africa. We used Cox proportional hazards regression models to assess the association between later-generation fluoroquinolone (moxifloxacin or levofloxacin) use and patient mortality, adjusting for risk factors typically associated with poor treatment outcomes. RESULTS: After adjusting for phenotypic resistance profile, low body mass index (<18.5 kg/m2), human immunodeficiency virus status, and study site, participants treated with a later-generation fluoroquinolone had half the risk of mortality compared with participants either not treated with any fluoroquinolone or treated only with an earlier-generation fluoroquinolone (adjusted hazard ratio, 0.46 [95% confidence interval, .26-.80]) during follow-up. CONCLUSIONS: Use of later-generation fluoroquinolones significantly reduced patient mortality risk in our cohort, suggesting that removal of a later-generation fluoroquinolone from a treatment regimen because of demonstrated resistance to an earlier-generation fluoroquinolone might increase mortality risk. Further studies should evaluate the effectiveness of later-generation fluoroquinolones among patients with and without resistance to early-generation fluoroquinolones. CLINICAL TRIALS REGISTRATION: NCT02170441.
Asunto(s)
Antituberculosos/uso terapéutico , Fluoroquinolonas/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/mortalidad , Adulto , Femenino , Humanos , Masculino , Estudios Prospectivos , Factores de RiesgoRESUMEN
Rapid molecular diagnostics have great potential to limit the spread of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) (M/XDR-TB). These technologies detect mutations in the Mycobacterium tuberculosis genome that confer phenotypic drug resistance. However, there have been few data published regarding the relationships between the detected M. tuberculosis resistance mutations and M/XDR-TB treatment outcomes, limiting our current ability to exploit the full potential of molecular diagnostics. We analyzed clinical, microbiological, and sequencing data for 451 patients and their clinical isolates collected in a multinational, observational cohort study to determine if there was an association between M. tuberculosis resistance mutations and patient mortality. The presence of an rrs 1401G mutation was associated with significantly higher odds of patient mortality (adjusted odds ratio [OR] = 5.72; 95% confidence interval [CI], 1.65 to 19.84]) after adjusting for relevant patient clinical characteristics and all other resistance mutations. Further analysis of mutations, categorized by the associated resistance level, indicated that the detection of mutations associated with high-level fluoroquinolone (OR, 3.99 [95% CI, 1.10 to 14.40]) and kanamycin (OR, 5.47 [95% CI, 1.64 to 18.24]) resistance was also significantly associated with higher odds of patient mortality, even after accounting for clinical site, patient age, reported smoking history, body mass index (BMI), diabetes, HIV, and all other resistance mutations. Specific gyrA and rrs resistance mutations, associated with high-level resistance, were associated with patient mortality as identified in clinical M. tuberculosis isolates from a diverse M/XDR-TB patient population at three high-burden clinical sites. These results have important implications for the interpretation of molecular diagnostics, including identifying patients at increased risk for mortality during treatment. (This study has been registered at ClinicalTrials.gov under registration no. NCT02170441.).
Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/mortalidad , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Técnicas Bacteriológicas , Niño , Estudios de Cohortes , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/aislamiento & purificación , Medición de Riesgo , Análisis de Secuencia de ADN , Análisis de Supervivencia , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Adulto JovenRESUMEN
Accurate identification of drug-resistantMycobacterium tuberculosisis imperative for effective treatment and subsequent reduction in disease transmission. Line probe assays rapidly detect mutations associated with resistance and wild-type sequences associated with susceptibility. Examination of molecular-level performance is necessary for improved assay result interpretation and for continued diagnostic development. Using data collected from a large, multisite diagnostic study, probe hybridization results from line probe assays, MTBDRplusand MTBDRsl, were compared to those of sequencing, and the diagnostic performance of each individual mutation and wild-type probe was assessed. Line probe assay results classified as resistant due to the absence of wild-type probe hybridization were compared to those of sequencing to determine if novel mutations were inhibiting wild-type probe hybridization. The contribution of absent wild-type probe hybridization to the detection of drug resistance was assessed via comparison to a phenotypic reference standard. In our study, mutation probes demonstrated significantly higher specificities than wild-type probes and wild-type probes demonstrated marginally higher sensitivities than mutation probes, an ideal combination for detecting the presence of resistance conferring mutations while yielding the fewest number of false-positive results. The absence of wild-type probe hybridization without mutation probe hybridization was determined to be primarily the result of failure of mutation probe hybridization and not the result of novel or rare mutations. Compared to phenotypic culture-based drug susceptibility testing, the absence of wild-type probe hybridization without mutation probe hybridization significantly contributed to the detection of phenotypic rifampin and fluoroquinolone resistance with negligible increases in false-positive results.
Asunto(s)
Técnicas de Diagnóstico Molecular/métodos , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Antituberculosos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Hibridación de Ácido Nucleico , Estudios Prospectivos , Sensibilidad y Especificidad , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Rapid molecular diagnostics, with their ability to quickly identify genetic mutations associated with drug resistance in Mycobacterium tuberculosis clinical specimens, have great potential as tools to control multi- and extensively drug-resistant tuberculosis (M/XDR-TB). The Qiagen PyroMark Q96 ID system is a commercially available pyrosequencing (PSQ) platform that has been validated for rapid M/XDR-TB diagnosis. However, the details of the assay's diagnostic and technical performance have yet to be thoroughly investigated in diverse clinical environments. METHODS: This study evaluates the diagnostic performance of the PSQ assay for 1128 clinical specimens from patients from three areas of high TB burden. We report on the diagnostic performance of the PSQ assay between the three sites and identify variables associated with poor PSQ technical performance. RESULTS: In India, the sensitivity of the PSQ assay ranged from 89 to 98 % for the detection of phenotypic resistance to isoniazid, rifampicin, fluoroquinolones, and the injectables. In Moldova, assay sensitivity ranged from 7 to 94 %, and in South Africa, assay sensitivity ranged from 71 to 92 %. Specificity was high (94-100 %) across all sites. The addition of eis promoter sequencing information greatly improved the sensitivity of kanamycin resistance detection in Moldova (7 % to 79 %). Nearly all (89.4 %) sequencing reactions conducted on smear-positive, culture-positive specimens and most (70.8 %) reactions conducted on smear-negative, culture-positive specimens yielded valid PSQ reads. An investigation into the variables influencing sequencing failures indicated smear negativity, culture negativity, site (Moldova), and sequencing of the rpoB, gyrA, and rrs genes were highly associated with poor PSQ technical performance (adj. OR > 2.0). CONCLUSIONS: This study has important implications for the global implementation of PSQ as a molecular TB diagnostic, as it demonstrates how regional factors may impact PSQ diagnostic performance, while underscoring potential gene targets for optimization to improve overall PSQ assay technical performance. TRIAL REGISTRATION: ClinicalTrials.gov ( #NCT02170441 ). Registered 12 June 2014.
Asunto(s)
Antituberculosos/farmacología , Tuberculosis Extensivamente Resistente a Drogas/diagnóstico , Mycobacterium tuberculosis/genética , Antituberculosos/uso terapéutico , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Fluoroquinolonas , Genes Bacterianos , Humanos , Isoniazida/farmacología , Kanamicina/farmacología , Resistencia a la Kanamicina/genética , Pruebas de Sensibilidad Microbiana , Técnicas de Diagnóstico Molecular , Tipificación Molecular , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Regiones Promotoras Genéticas , Rifampin/farmacología , Sensibilidad y Especificidad , Análisis de Secuencia de ADNRESUMEN
We describe ongoing efforts to better understand the interaction of spoken languages and their physical environments. We begin by briefly surveying research suggesting that languages evolve in ways that are influenced by the physical characteristics of their environments, however the primary focus is on the converse issue: how speech affects the physical environment. We discuss the speech-based production of airflow and aerosol particles that are buoyant in ambient air, based on some of the results in the literature. Most critically, we demonstrate a novel method used to capture aerosol, airflow, and acoustic data simultaneously. This method captures airflow data via a pneumotachograph and aerosol data via an electrical particle impactor. The data are collected underneath a laminar flow hood while participants breathe pure air, thereby eliminating background aerosol particles and isolating those produced during speech. Given the capabilities of the electrical particle impactor, which has not previously been used to analyze speech-based aerosols, the method allows for the detection of aerosol particles at temporal and physical resolutions exceeding those evident in the literature, even enabling the isolation of the role of individual sound types in the production of aerosols. The aerosols detected via this method range in size from 70 nanometers to 10 micrometers in diameter. Such aerosol particles are capable of hosting airborne pathogens. We discuss how this approach could ultimately yield data that are relevant to airborne disease transmission and offer preliminary results that illustrate such relevance. The method described can help uncover the actual articulatory gestures that generate aerosol emissions, as exemplified here through a discussion focused on plosive aspiration and vocal cord vibration. The results we describe illustrate in new ways the unseen and unheard ways in which spoken languages interact with their physical environments.
RESUMEN
Racial and ethnic disparities in COVID-19 incidence are pronounced in underserved U.S./Mexico border communities. Working and living environments in these communities can lead to increased risk of COVID-19 infection and transmission, and this increased risk is exacerbated by lack of access to testing. As part of designing a community and culturally tailored COVID-19 testing program, we surveyed community members in the San Ysidro border region. The purpose of our study was to characterize knowledge, attitudes, and beliefs of prenatal patients, prenatal caregivers, and pediatric caregivers at a Federally Qualified Health Center (FHQC) in the San Ysidro region regarding perceived risk of COVID-19 infection and access to testing. A cross-sectional survey was used to collect information on experiences accessing COVID-19 testing and perceived risk of COVID-19 infection within San Ysidro between December 29, 2020 and April 2, 2021. A total of 179 surveys were analyzed. Most participants identified as female (85%) and as Mexican/Mexican American (75%). Over half (56%) were between the age of 25 and 34 years old. Perceived Risk: 37% reported moderate to high risk of COVID-19 infection, whereas 50% reported their risk low to none. Testing Experience: Approximately 68% reported previously being tested for COVID-19. Among those tested, 97% reported having very easy or easy access to testing. Reasons for not testing included limited appointment availability, cost, not feeling sick, and concern about risk of infection while at a testing facility. This study is an important first step to understand the COVID-19 risk perceptions and testing access among patients and community members living near the U.S./Mexico border in San Ysidro, California.
COVID-19 testing strategies that fail to incorporate culturally competent methods to reach traditionally underserved communities can lead to persistent transmission and increased infection rates. During the early stages of the COVID-19 pandemic, we surveyed 179 people living in a community with high burden of COVID-19 infection about their perception of infection risk and their experiences accessing testing. Capturing and understanding these community perceptions on COVID-19 risk are vital when developing a testing program that is accessible and appropriate for the target population. In our study, we found half of survey respondents thought their risk of COVID-19 infection as low to none and over half of respondents stated they had already been tested for COVID-19. These findings provide insight to the beliefs of individuals who live and seek health care in communities with high rates of COVID-19 infection and will help guide the design and implementation of culturally tailored testing strategies.
Asunto(s)
Prueba de COVID-19 , COVID-19 , Conocimientos, Actitudes y Práctica en Salud , Accesibilidad a los Servicios de Salud , Adulto , Niño , Femenino , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/etnología , COVID-19/psicología , Prueba de COVID-19/estadística & datos numéricos , Estudios Transversales , Americanos Mexicanos/psicología , Americanos Mexicanos/estadística & datos numéricos , California/epidemiología , Riesgo , Conocimientos, Actitudes y Práctica en Salud/etnología , Cuidadores/estadística & datos numéricos , Accesibilidad a los Servicios de Salud/estadística & datos numéricos , Embarazo , Encuestas y Cuestionarios/estadística & datos numéricosRESUMEN
OBJECTIVES: To assess associations between disease severity in index TB patients and QuantiFERON-TB Gold Plus (QFT-Plus) results in contacts, and predictors for QFT-Plus conversion in contacts over 6-12 months. METHODS: TB patients (n = 295) and the contacts (n = 1051) were enrolled during 2018-2021 with QFT-Plus performed at baseline and months 6 and 12. A strong CD8 response was defined as TB2 interferon gamma (IFN-γ) response minus TB1 >0.6 IU/ml and stringent conversion as change from QFT-plus negative to high-positive QFT-Plus (TB1 or TB2 IFN-γ responses >0.7 IU/ml). RESULTS: Contacts with index TB patients with sputum smear >1+ was associated with positive QFT-Plus compared to those without (p < 0.001). Contacts with index TB patients with bilateral lung disease were more likely to have strong CD8 responses than those without (p = 0.038). QFT-Plus stringent conversion occurred in 9.7% of contacts over 6-12 months. A TB1 IFN-γ response ≥0.03 IU/ml combined with a TB2 ≥0.06 IU/ml was predictive of a 19-fold increased risk for QFT-Plus stringent conversion in contacts (odd ratio 19.565 [8.484-45.116], p < 0.001). CONCLUSION: Bacterial burden and bilateral lung disease of index TB patients were associated with positive QFT-Plus and strong CD8 responses in contacts. TB1 and TB2 IFN-γ responses were synergistically predictive of stringent conversion in contacts.
Asunto(s)
Tuberculosis Latente , Enfermedades Pulmonares , Mycobacterium tuberculosis , Tuberculosis , Humanos , Tuberculosis Latente/diagnóstico , Ensayos de Liberación de Interferón gamma/métodos , Tuberculosis/diagnóstico , Tuberculosis/microbiología , Interferón gamma , Prueba de Tuberculina/métodosRESUMEN
Background: COVID-19 vaccine uptake has been uneven, particularly across racial/ethnic and age groups. This study seeks to understand factors associated with COVID-19 vaccine uptake in a large cross-sectional sample of predominantly Latinos/Latinas individuals living near the US/Mexico border. Methods: Data are extracted from a 176-item survey conducted as part of a parent study focused on the co-creation of a COVID-19 testing program for underserved communities developed through a partnership between an academic institution and a Federally Qualified Health Center. The following participant variables were examined: health history, COVID-19 symptoms, COVID-19 testing and vaccine experiences, and perceptions of sources of health information. Participant characteristics were compared using chi-square tests. Multivariate logistic regressions were used for the final statistical model. Results: From 1 May 2021 to 30 April 2022, 4,964 adults, 66% of whom were identified as women, completed the survey. Approximately 80% of participants reported having received at least one COVID-19 vaccine. Female sex, older age, Hispanic/Latino(a) ethnicity, previous influenza vaccination, advanced education, and perceived elevated risk of COVID-19 were significantly (p < 0.05) associated with having received a COVID-19 vaccine. Regarding sources of health information, individuals who indicated they trust their doctor, healthcare provider, or the US government "a great deal" were more likely to have received a COVID-19 vaccine compared to individuals who indicated that they trusted these sources "not at all." In contrast, those who reported having "a great deal" of trust in their faith leader or their social media contacts were significantly less likely to have received a COVID-19 vaccine than those who reported that they trusted these sources "not at all." Conclusion: Sex, education, past influenza vaccination, perceived risk of COVID-19 infection, and trust in specific sources of information were correlated with the uptake of COVID-19 vaccination. Additional research is needed to better understand why this confluence of factors, particularly the unique findings about trusted sources of information, are associated with vaccine uptake. Understanding these associations, specifically within underserved, Latino/Hispanic communities, is an important first step to inform efforts aimed at increasing and sustaining COVID-19 vaccine uptake and adoption of other public health interventions.
Asunto(s)
COVID-19 , Gripe Humana , Adulto , Femenino , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Prueba de COVID-19 , Vacunas contra la COVID-19 , Estudios Transversales , Etnicidad , Gripe Humana/epidemiología , Gripe Humana/prevención & control , México , Confianza , Vacunación , MasculinoRESUMEN
BACKGROUND: There continues to be a need for COVID-19 testing that is pragmatic, community-centered, and sustainable. This study will refine and test implementation strategies prioritized by community partners: (1) walk-up no-cost testing, (2) community health worker (promotores)-facilitated testing and preventive care counseling, (3) vending machines that dispense no-cost, self-testing kits. METHODS: A co-designed Theory of Change from an earlier study phase and the Practical, Robust Implementation and Sustainment Model (PRISM) will guide the study design, measures selection, and evaluation. The first aim is to refine and operationalize a multi-component implementation strategy bundle and outcome measures for COVID-19 testing. A Community and Scientific Advisory Board (CSAB) will be established and include community members, clinical providers/staff from the partnering Federally Qualified Health Center (FQHC), public health researchers, policymakers, and a county health department ambassador. Engagement of CSAB members will be assessed through structured ethnography and a survey about the quality and quantity of engagement practices. The second aim is to implement and evaluate the impact of the implementation strategy bundle to optimize COVID-19 testing in communities using a roll-out implementation optimization (ROIO) design. Seven thousand and five hundred community members will be enrolled across four FQHC clinics over 18 months. Participants will be invited to complete an electronic survey about their demographics, health, and COVID-19 testing results and experiences. CSAB members and clinic partners will participate in PRISM fit and determinant assessments prior to each clinic rollout and post-trial. Interviews will be conducted with 60 community participants and 12 providers/staff following a 3-month rollout period at each clinic, inquiring about their experiences with the implementation strategies. Quantitative data will be analyzed using hierarchical multilevel models to determine the impact of implementation strategies. Qualitative data will be analyzed using rapid qualitative approaches to summarize implementation experiences and identify necessary changes prior to subsequent rollouts. A matrix approach will be used to triangulate data from quantitative and qualitative sources based on PRISM domains. DISCUSSION: This is one of the first pragmatic implementation trials to use a ROIO design and aims to co-create a sustainable and equitable COVID-19 testing program. Findings are likely to generalize to other public health prevention efforts. TRIAL REGISTRATION: NCT05894655 March 2, 2023.
Asunto(s)
Prueba de COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Consejo , Instituciones de Atención Ambulatoria , Salud PúblicaRESUMEN
BACKGROUND: COVID-19 inequities are abundant in low-income communities of color. Addressing COVID-19 vaccine hesitancy to promote equitable and sustained vaccination for underserved communities requires a multi-level, scalable, and sustainable approach. It is also essential that efforts acknowledge the broader healthcare needs of these communities including engagement in preventive services. METHODS: This is a hybrid type 3 effectiveness-implementation study that will include a multi-level, longitudinal, mixed-methods data collection approach designed to assess the sustained impact of a co-created multicomponent strategy relying on bidirectional learning, shared decision-making, and expertise by all team members. The study capitalizes on a combination of implementation strategies including mHealth outreach with culturally appropriate messaging, care coordination to increase engagement in high priority preventive services, and the co-design of these strategies using community advisory boards led by Community Weavers. Community Weavers are individuals with lived experience as members of an underserved community serving as cultural brokers between communities, public health systems, and researchers to co-create community-driven, culturally sensitive public health solutions. The study will use an adaptive implementation approach operationalized in a sequential multiple assignment randomized trial design of 300 participants from three sites in a Federally Qualified Health Center in Southern California. This design will allow examining the impact of various implementation strategy components and deliver more intensive support to those who benefit from it most. The primary effectiveness outcomes are COVID-19 vaccine completion, engagement in preventive services, and vaccine confidence. The primary implementation outcomes are reach, adoption, implementation, and maintenance of the multicomponent strategy over a 12-month follow-up period. Mixed-effects logistic regression models will be used to examine program impacts and will be triangulated with qualitative data from participants and implementers. DISCUSSION: This study capitalizes on community engagement, implementation science, health equity and communication, infectious disease, and public health perspectives to co-create a multicomponent strategy to promote the uptake of COVID-19 vaccination and preventive services for underserved communities in San Diego. The study design emphasizes broad engagement of our community and clinic partners leading to culturally sensitive and acceptable strategies to produce lasting and sustainable increases in vaccine equity and preventive services engagement. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05841810 May 3, 2023.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacunas contra la COVID-19/uso terapéutico , COVID-19/prevención & control , Servicios de Salud , Atención a la Salud , VacunaciónAsunto(s)
Antituberculosos/administración & dosificación , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Humanos , Mycobacterium tuberculosis/aislamiento & purificación , Curva ROCRESUMEN
Universal drug susceptibility testing (DST) for tuberculosis is a major goal of the END TB strategy. PCR-based molecular diagnostic tests have been instrumental in increasing DST globally and several assays have now been endorsed by the World Health Organization (WHO) for use in the diagnosis of drug resistance. These endorsed assays, however, each interrogate a limited number of mutations associated with resistance, potentially limiting their sensitivity compared to sequencing-based methods. We applied an in silico method to compare the sensitivity and specificity of WHO-endorsed molecular based diagnostics to the mutation set identified by the WHO mutations catalogue using phenotypic DST as the reference. We found that, in silico, the mutation sets used by probe-based molecular diagnostic tests to identify rifampicin, isoniazid, pyrazinamide, levofloxacin, moxifloxacin, amikacin, capreomycin and kanamycin resistance produced similar sensitivities and specificities to the WHO mutation catalogue. PCR-based diagnostic tests were most sensitive for drugs where mechanisms of resistance are well established and localised to small genetic regions or a few prevalent mutations. Approaches using sequencing technologies can provide advantages for drugs where our knowledge of resistance is limited, or where complex resistance signatures exist.
Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Isoniazida , Pirazinamida , Rifampin , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Pruebas de Sensibilidad Microbiana , Capreomicina , Mycobacterium tuberculosis/genética , Amicacina , Levofloxacino , Moxifloxacino , Genotipo , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/genética , Organización Mundial de la SaludRESUMEN
While there has been progress in detection of drug resistant tuberculosis globally, WHO estimates only about half of the patients with bacteriologically confirmed tuberculosis were tested for rifampicin resistance over the past two years. To close this drug resistance diagnostic gap, an expansion of testing for rifampicin and isoniazid resistance is critically needed. The Akonni Biosystem Integrated System combines DNA extraction and a Lab-on-a-Film assembly (LFA) to perform rapid probe and PCR-based detection of resistance associated mutations to first-line anti-tuberculosis drugs. Using raw sputum samples from 25 tuberculosis patients at risk for drug resistance, we conducted a proof-of-concept study of the Integrated System with an MDR-TB assay. Performance of the Integrated System was compared to liquid Mycobacteria Growth Indicator Tube (MGIT) culture reference phenotypes using 2012 WHO endorsed critical concentrations for rifampicin and isoniazid. The overall percent agreement for rifampicin and isoniazid was 91.7% and 100% respectively, with agreement for rifampicin increasing to 95.7% after low-level resistance mutations in rpoB were excluded. The Integrated System, combining DNA extraction and LFA amplification, is a promising new tool for detection of both rifampicin and isoniazid using liquefied raw sputum.