Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Immunol ; 208(4): 807-818, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35039330

RESUMEN

Granulomatosis with polyangiitis (GPA) is a potentially fatal small vessel vasculitis of unknown etiology, characterized by anti-neutrophil cytoplasmic autoantibodies, chronic inflammation, and granulomatous tissue damage. T cell dysregulation, comprising decreased regulatory T cell function and increased circulating effector memory follicular Th cells (TFH), is strongly associated with disease pathogenesis, but the mechanisms driving these observations are unknown. We undertook transcriptomic and functional analysis of naive CD4 T cells from patients with GPA to identify underlying functional defects that could manifest in the pathogenic profiles observed in GPA. Gene expression studies revealed a dysregulation of the IL-2 receptor ß/JAK-STAT signaling pathway and higher expression of BCL6 and BCL6-regulated genes in GPA naive CD4 T cells. IL-2-induced STAT5 activation in GPA naive CD4 T cells was decreased, whereas STAT3 activation by IL-6 and IL-2 was unperturbed. Consistently, BCL6 expression was sustained following T cell activation of GPA naive CD4 T cells and in vitro TFH differentiation of these cells resulted in significant increases in the production TFH-related cytokines IL-21 and IL-6. Thus, naive CD4 T cells are dysregulated in patients with GPA, resulting from an imbalance in signaling equilibrium and transcriptional changes that drives the skewed pathogenic CD4 effector immune response in GPA.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Granulomatosis con Poliangitis/etiología , Granulomatosis con Poliangitis/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Factor de Transcripción STAT5/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Adulto , Anciano , Diferenciación Celular/inmunología , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Granulomatosis con Poliangitis/diagnóstico , Humanos , Quinasas Janus/metabolismo , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Interleucina-2/metabolismo , Transducción de Señal , Transcriptoma , Adulto Joven
2.
Genome Res ; 25(4): 504-13, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25677180

RESUMEN

In addition to mediating sister chromatid cohesion during the cell cycle, the cohesin complex associates with CTCF and with active gene regulatory elements to form long-range interactions between its binding sites. Genome-wide chromosome conformation capture had shown that cohesin's main role in interphase genome organization is in mediating interactions within architectural chromosome compartments, rather than specifying compartments per se. However, it remains unclear how cohesin-mediated interactions contribute to the regulation of gene expression. We have found that the binding of CTCF and cohesin is highly enriched at enhancers and in particular at enhancer arrays or "super-enhancers" in mouse thymocytes. Using local and global chromosome conformation capture, we demonstrate that enhancer elements associate not just in linear sequence, but also in 3D, and that spatial enhancer clustering is facilitated by cohesin. The conditional deletion of cohesin from noncycling thymocytes preserved enhancer position, H3K27ac, H4K4me1, and enhancer transcription, but weakened interactions between enhancers. Interestingly, ∼ 50% of deregulated genes reside in the vicinity of enhancer elements, suggesting that cohesin regulates gene expression through spatial clustering of enhancer elements. We propose a model for cohesin-dependent gene regulation in which spatial clustering of enhancer elements acts as a unified mechanism for both enhancer-promoter "connections" and "insulation."


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Familia de Multigenes/genética , Proteínas Represoras/metabolismo , Timocitos/citología , Animales , Sitios de Unión/genética , Factor de Unión a CCCTC , Células Cultivadas , Histonas/genética , Ratones , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Cohesinas
3.
Nature ; 476(7361): 467-71, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21832993

RESUMEN

Cohesin enables post-replicative DNA repair and chromosome segregation by holding sister chromatids together from the time of DNA replication in S phase until mitosis. There is growing evidence that cohesin also forms long-range chromosomal cis-interactions and may regulate gene expression in association with CTCF, mediator or tissue-specific transcription factors. Human cohesinopathies such as Cornelia de Lange syndrome are thought to result from impaired non-canonical cohesin functions, but a clear distinction between the cell-division-related and cell-division-independent functions of cohesion--as exemplified in Drosophila--has not been demonstrated in vertebrate systems. To address this, here we deleted the cohesin locus Rad21 in mouse thymocytes at a time in development when these cells stop cycling and rearrange their T-cell receptor (TCR) α locus (Tcra). Rad21-deficient thymocytes had a normal lifespan and retained the ability to differentiate, albeit with reduced efficiency. Loss of Rad21 led to defective chromatin architecture at the Tcra locus, where cohesion-binding sites flank the TEA promoter and the Eα enhancer, and demarcate Tcra from interspersed Tcrd elements and neighbouring housekeeping genes. Cohesin was required for long-range promoter-enhancer interactions, Tcra transcription, H3K4me3 histone modifications that recruit the recombination machinery and Tcra rearrangement. Provision of pre-rearranged TCR transgenes largely rescued thymocyte differentiation, demonstrating that among thousands of potential target genes across the genome, defective Tcra rearrangement was limiting for the differentiation of cohesin-deficient thymocytes. These findings firmly establish a cell-division-independent role for cohesin in Tcra locus rearrangement and provide a comprehensive account of the mechanisms by which cohesin enables cellular differentiation in a well-characterized mammalian system.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proteínas Cromosómicas no Histona/metabolismo , Reordenamiento Génico de Linfocito T , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Timo/citología , Animales , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/deficiencia , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN , Regulación de la Expresión Génica , Reordenamiento Génico de Linfocito T/genética , Genes RAG-1/genética , Ratones , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Recombinasas/metabolismo , Timo/metabolismo , Transcripción Genética , Cohesinas
4.
Genome Res ; 23(12): 2066-77, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24002784

RESUMEN

Chromosome conformation capture approaches have shown that interphase chromatin is partitioned into spatially segregated Mb-sized compartments and sub-Mb-sized topological domains. This compartmentalization is thought to facilitate the matching of genes and regulatory elements, but its precise function and mechanistic basis remain unknown. Cohesin controls chromosome topology to enable DNA repair and chromosome segregation in cycling cells. In addition, cohesin associates with active enhancers and promoters and with CTCF to form long-range interactions important for gene regulation. Although these findings suggest an important role for cohesin in genome organization, this role has not been assessed on a global scale. Unexpectedly, we find that architectural compartments are maintained in noncycling mouse thymocytes after genetic depletion of cohesin in vivo. Cohesin was, however, required for specific long-range interactions within compartments where cohesin-regulated genes reside. Cohesin depletion diminished interactions between cohesin-bound sites, whereas alternative interactions between chromatin features associated with transcriptional activation and repression became more prominent, with corresponding changes in gene expression. Our findings indicate that cohesin-mediated long-range interactions facilitate discrete gene expression states within preexisting chromosomal compartments.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/fisiología , Regulación de la Expresión Génica , Proteínas Represoras/metabolismo , Timocitos/metabolismo , Animales , Factor de Unión a CCCTC , Ciclo Celular/genética , Cromosomas de los Mamíferos , Proteínas de Unión al ADN , Dosificación de Gen , Genoma , Modelos Lineales , Ratones , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Cohesinas
5.
Trends Immunol ; 33(4): 153-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22440186

RESUMEN

The somatic recombination of lymphocyte antigen receptor loci is integral to lymphocyte differentiation and adaptive immunity. Here we review the relation of this highly choreographed process with the zinc finger protein CTCF and with cohesin, a protein complex best known for its essential functions in post-replicative DNA repair and chromosome segregation during the cell cycle. At lymphocyte antigen receptor loci, CTCF and cohesin shape long-range interactions and contribute to V(D)J recombination by facilitating lineage- and developmental-stage-specific transcription and accessibility.


Asunto(s)
Proteínas de Ciclo Celular/inmunología , Proteínas Cromosómicas no Histona/inmunología , Reordenamiento Génico de Linfocito T , Proteínas Represoras/inmunología , Animales , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Sitios Genéticos , Humanos , Proteínas Represoras/genética , Transcripción Genética , Recombinación V(D)J , Cohesinas
6.
Nat Commun ; 11(1): 5469, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33122634

RESUMEN

Zbtb11 is a conserved transcription factor mutated in families with hereditary intellectual disability. Its precise molecular and cellular functions are currently unknown, precluding our understanding of the aetiology of this disease. Using a combination of functional genomics, genetic and biochemical approaches, here we show that Zbtb11 plays essential roles in maintaining the homeostasis of mitochondrial function. Mechanistically, we find Zbtb11 facilitates the recruitment of nuclear respiratory factor 2 (NRF-2) to its target promoters, activating a subset of nuclear genes with roles in the biogenesis of respiratory complex I and the mitoribosome. Genetic inactivation of Zbtb11 resulted in a severe complex I assembly defect, impaired mitochondrial respiration, mitochondrial depolarisation, and ultimately proliferation arrest and cell death. Experimental modelling of the pathogenic human mutations showed these have a destabilising effect on the protein, resulting in reduced Zbtb11 dosage, downregulation of its target genes, and impaired complex I biogenesis. Our study establishes Zbtb11 as an essential mitochondrial regulator, improves our understanding of the transcriptional mechanisms of nuclear control over mitochondria, and may help to understand the aetiology of Zbtb11-associated intellectual disability.


Asunto(s)
Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Discapacidad Intelectual/genética , Mitocondrias/metabolismo , Dedos de Zinc/genética , Animales , Línea Celular , ADN Mitocondrial , Complejo I de Transporte de Electrón/biosíntesis , Complejo I de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Discapacidad Intelectual/etiología , Ratones , Mutación/genética , Regiones Promotoras Genéticas , Proteínas Represoras/genética
7.
PLoS Biol ; 4(8): e242, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16802858

RESUMEN

Saccharomyces cerevisiae Scc2 binds Scc4 to form an essential complex that loads cohesin onto chromosomes. The prevalence of Scc2 orthologs in eukaryotes emphasizes a conserved role in regulating sister chromatid cohesion, but homologs of Scc4 have not hitherto been identified outside certain fungi. Some metazoan orthologs of Scc2 were initially identified as developmental gene regulators, such as Drosophila Nipped-B, a regulator of cut and Ultrabithorax, and delangin, a protein mutant in Cornelia de Lange syndrome. We show that delangin and Nipped-B bind previously unstudied human and fly orthologs of Caenorhabditis elegans MAU-2, a non-axis-specific guidance factor for migrating cells and axons. PSI-BLAST shows that Scc4 is evolutionarily related to metazoan MAU-2 sequences, with the greatest homology evident in a short N-terminal domain, and protein-protein interaction studies map the site of interaction between delangin and human MAU-2 to the N-terminal regions of both proteins. Short interfering RNA knockdown of human MAU-2 in HeLa cells resulted in precocious sister chromatid separation and in impaired loading of cohesin onto chromatin, indicating that it is functionally related to Scc4, and RNAi analyses show that MAU-2 regulates chromosome segregation in C. elegans embryos. Using antisense morpholino oligonucleotides to knock down Xenopus tropicalis delangin or MAU-2 in early embryos produced similar patterns of retarded growth and developmental defects. Our data show that sister chromatid cohesion in metazoans involves the formation of a complex similar to the Scc2-Scc4 interaction in the budding yeast. The very high degree of sequence conservation between Scc4 homologs in complex metazoans is consistent with increased selection pressure to conserve additional essential functions, such as regulation of cell and axon migration during development.


Asunto(s)
Axones/fisiología , Movimiento Celular , Cromátides/fisiología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Secuencia Conservada , Proteínas de Unión al ADN/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Datos de Secuencia Molecular , Proteínas/metabolismo , Interferencia de ARN , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos , Xenopus
8.
Elife ; 82019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30775970

RESUMEN

Mitochondria play important roles in cellular processes and disease, yet little is known about how the transcriptional regime of the mitochondrial genome varies across individuals and tissues. By analyzing >11,000 RNA-sequencing libraries across 36 tissue/cell types, we find considerable variation in mitochondrial-encoded gene expression along the mitochondrial transcriptome, across tissues and between individuals, highlighting the importance of cell-type specific and post-transcriptional processes in shaping mitochondrial-encoded RNA levels. Using whole-genome genetic data we identify 64 nuclear loci associated with expression levels of 14 genes encoded in the mitochondrial genome, including missense variants within genes involved in mitochondrial function (TBRG4, MTPAP and LONP1), implicating genetic mechanisms that act in trans across the two genomes. We replicate ~21% of associations with independent tissue-matched datasets and find genetic variants linked to these nuclear loci that are associated with cardio-metabolic phenotypes and Vitiligo, supporting a potential role for variable mitochondrial-encoded gene expression in complex disease.


Asunto(s)
Núcleo Celular/genética , Regulación de la Expresión Génica , Mitocondrias/genética , Transcriptoma/genética , Bases de Datos Genéticas , Enfermedad/genética , Genes Mitocondriales , Humanos , Polimorfismo de Nucleótido Simple/genética , Reproducibilidad de los Resultados
9.
Curr Opin Genet Dev ; 22(2): 93-100, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22155130

RESUMEN

Cohesin defines the topology of chromosomes in mitosis and meiosis by holding sister chromatids together; more recently a role for cohesin in chromatin organisation and gene expression in interphase has emerged.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Animales , Cromatina/química , Cromatina/metabolismo , Replicación del ADN , Expresión Génica , Humanos , Interfase , Transcripción Genética , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA