Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Stem Cells ; 38(6): 782-796, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32083764

RESUMEN

Human adipose-derived stem/stromal cells (hASCs) can differentiate into specialized cell types and thereby contribute to tissue regeneration. As such, hASCs have drawn increasing attention in cell therapy and regenerative medicine, not to mention the ease to isolate them from donors. Culture conditions are critical for expanding hASCs while maintaining optimal therapeutic capabilities. Here, we identified a role for transforming growth factor ß1 (TGFß1) in culture medium in influencing the fate of hASCs during in vitro cell expansion. Human ASCs obtained after expansion in standard culture medium (Standard-hASCs) and in endothelial cell growth medium 2 (EGM2-hASCs) were characterized by high-throughput transcriptional studies, gene set enrichment analysis and functional properties. EGM2-hASCs exhibited enhanced multipotency capabilities and an immature phenotype compared with Standard-hASCs. Moreover, the adipogenic potential of EGM2-hASCs was enhanced, including toward beige adipogenesis, compared with Standard-hASCs. In these conditions, TGFß1 acts as a critical factor affecting the immaturity and multipotency of Standard-hASCs, as suggested by small mother of decapentaplegic homolog 3 (SMAD3) nuclear localization and phosphorylation in Standard-hASCs vs EGM2-hASCs. Finally, the typical priming of Standard-hASCs into osteoblast, chondroblast, and vascular smooth muscle cell (VSMC) lineages was counteracted by pharmacological inhibition of the TGFß1 receptor, which allowed retention of SMAD3 into the cytoplasm and a decrease in expression of osteoblast and VSMC lineage markers. Overall, the TGFß1 pathway appears critical in influencing the commitment of hASCs toward osteoblast, chondroblast, and VSMC lineages, thus reducing their adipogenic potential. These effects can be counteracted by using EGM2 culture medium or chemical inhibition of the TGFß1 pathway.


Asunto(s)
Adipocitos Beige/metabolismo , Adipocitos Blancos/metabolismo , Tejido Adiposo/metabolismo , Células del Estroma/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proliferación Celular , Células Cultivadas , Medios de Cultivo , Humanos
2.
Stem Cells ; 38(1): 146-159, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31502731

RESUMEN

Clinical-grade mesenchymal stromal cells (MSCs) can be expanded from bone marrow and adipose tissue to treat inflammatory diseases and degenerative disorders. However, the influence of their tissue of origin on their functional properties, including their immunosuppressive activity, remains unsolved. In this study, we produced paired bone marrow-derived mesenchymal stromal cell (BM-MSC) and adipose-derived stromal cell (ASC) batches from 14 healthy donors. We then compared them using transcriptomic, phenotypic, and functional analyses and validated our results on purified native MSCs to infer which differences were really endowed by tissue of origin. Cultured MSCs segregated together owing to their tissue of origin based on their gene expression profile analyzed using differential expression and weighted gene coexpression network analysis. This translated into distinct immune-related gene signatures, phenotypes, and functional cell interactions. Importantly, sorted native BM-MSCs and ASCs essentially displayed the same distinctive patterns than their in vitro-expanded counterparts. As a whole, ASCs exhibited an immune profile consistent with a stronger inhibition of immune response and a lower immunogenicity, supporting the use of adipose tissue as a valuable source for clinical applications.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Transcriptoma/genética , Adulto , Diferenciación Celular , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
3.
Mol Cell Proteomics ; 18(4): 744-759, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30700495

RESUMEN

The proteasome controls a multitude of cellular processes through protein degradation and has been identified as a therapeutic target in oncology. However, our understanding of its function and the development of specific modulators are hampered by the lack of a straightforward method to determine the overall proteasome status in biological samples. Here, we present a method to determine the absolute quantity and stoichiometry of ubiquitous and tissue-specific human 20S proteasome subtypes based on a robust, absolute SILAC-based multiplexed LC-Selected Reaction Monitoring (SRM) quantitative mass spectrometry assay with high precision, accuracy, and sensitivity. The method was initially optimized and validated by comparison with a reference ELISA assay and by analyzing the dynamics of catalytic subunits in HeLa cells following IFNγ-treatment and in range of human tissues. It was then successfully applied to reveal IFNγ- and O2-dependent variations of proteasome status during primary culture of Adipose-derived-mesenchymal Stromal/Stem Cells (ADSCs). The results show the critical importance of controlling the culture conditions during cell expansion for future therapeutic use in humans. We hypothesize that a shift from the standard proteasome to the immunoproteasome could serve as a predictor of immunosuppressive and differentiation capacities of ADSCs and, consequently, that quality control should include proteasomal quantification in addition to examining other essential cell parameters. The method presented also provides a new powerful tool to conduct more individualized protocols in cancer or inflammatory diseases where selective inhibition of the immunoproteasome has been shown to reduce side effects.


Asunto(s)
Espectrometría de Masas/métodos , Células Madre Mesenquimatosas/citología , Complejo de la Endopetidasa Proteasomal/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Interferón gamma/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Oxígeno/farmacología , Reproducibilidad de los Resultados
4.
Cytotherapy ; 21(4): 468-482, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30926359

RESUMEN

BACKGROUND: Many data are available on expansion protocols for mesenchymal stromal cells (MSCs) for both experimental settings and manufacturing for clinical trials. However, there is a lack of information on translation of established protocols for Good Manufacturing Practice (GMP) from validation to manufacturing for clinical application. We present the validation and translation of a standardized pre-clinical protocol for isolation and expansion of MSCs for a clinical trial for reconstitution of alveolar bone. METHODS: Key parameters of 22 large-scale expansions of MSCs from bone marrow (BM) for validation were compared with 11 expansions manufactured for the clinical trial "Jaw bone reconstruction using a combination of autologous mesenchymal stromal cells and biomaterial prior to dental implant placement (MAXILLO1)" aimed at reconstruction of alveolar bone. RESULTS: Despite variations of the starting material, the robust protocol led to stable performance characteristics of expanded MSCs. Manufacturing of the autologous advanced therapy medicinal product MAXILLO-1-MSC was possible, requiring 21 days for each product. Transport of BM aspirates and MSCs within 24 h was guaranteed. MSCs fulfilled quality criteria requested by the national competent authority. In one case, the delivered MSCs developed a mosaic in chromosomal finding, showing no abnormality in differentiation capacity, growth behavior or surface marker expression during long-term culture. The proportion of cells with the mosaic decreased in long-term culture and cells stopped growth after 38.4 population doublings. CONCLUSIONS: Clinical use of freshly prepared MSCs, manufactured according to a standardized and validated protocol, is feasible for bone regeneration, even if there was a long local distance between manufacturing center and clinical site. Several parameters, such as colony forming units fibroblasts (CFU-F), percentage of CD34+ cells, cell count of mononuclear cells (MNCs) and white blood cells (WBCs), of the BM may serve as a predictive tool for the yield of MSCs and may help to avoid unnecessary costs for MSC manufacturing due to insufficient cell expansion rates.


Asunto(s)
Técnicas de Cultivo de Célula/normas , Células Madre Mesenquimatosas/citología , Investigación Biomédica Traslacional , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Células de la Médula Ósea/citología , Recuento de Células , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Femenino , Humanos , Cariotipificación , Masculino , Persona de Mediana Edad , Estándares de Referencia , Donantes de Tejidos , Adulto Joven
5.
Stem Cells ; 35(5): 1431-1436, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28142215

RESUMEN

Owing to their immunosuppressive properties, mesenchymal stromal cells (MSCs) obtained from bone marrow (BM-MSCs) or adipose tissue (ASCs) are considered a promising tool for cell therapy. However, important issues should be considered to ensure the reproducible production of efficient and safe clinical-grade MSCs. In particular, high expansion rate, associated with progressive senescence, was recently proposed as one of the parameters that could alter MSC functionality. In this study, we directly address the consequences of replicative senescence on BM-MSC and ASC immunomodulatory properties. We demonstrate that MSCs produced according to GMP procedures inhibit less efficiently T-cell, but not Natural Killer (NK)- and B-cell, proliferation after reaching senescence. Senescence-related loss-of-function is associated with a decreased indoleamine 2,3-dioxygenase (IDO) activity in response to inflammatory stimuli. In particular, although STAT-1-dependent IDO expression is transcriptionally induced at a similar level in senescent and nonsenescent MSCs, IDO protein is specifically degraded by the proteasome in senescent ASCs and BM-MSCs, a process that could be reversed by the MG132 proteasome inhibitor. These data encourage the use of appropriate quality controls focusing on immunosuppressive mechanisms before translating clinical-grade MSCs in the clinic. Stem Cells 2017;35:1431-1436.


Asunto(s)
Senescencia Celular , Terapia de Inmunosupresión , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proliferación Celular , Humanos , Linfocitos T/citología
6.
Cytotherapy ; 19(1): 47-60, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27765602

RESUMEN

BACKGROUND AIMS: Using innovative tools derived from social network analysis, the aims of this study were (i) to decipher the spatial and temporal structure of the research centers network dedicated to the therapeutic uses of mesenchymal stromal cells (MSCs) and (ii) to measure the influence of fields of applications, cellular sources and industry funding on network topography. METHODS: From each trial using MSCs reported on ClinicalTrials.gov, all research centers were extracted. Networks were generated using Cytoscape 3.2.2, where each center was assimilated to a node, and one trial to an edge connecting two nodes. RESULTS: The analysis included 563 studies. An independent segregation was obvious between continents. Asian, South American and African centers were significantly more isolated than other centers. Isolated centers had fewer advanced phases (P <0.001), completed studies (P = 0.01) and industry-supported studies (P <0.001). Various thematic priorities among continents were identified: the cardiovascular, digestive and nervous system diseases were strongly studied by North America, Europe and Asia, respectively. The choice of cellular sources also affected the network topography; North America was primarily involved in bone-marrow-derived MSC research, whereas Europe and Asia dominated the use of adipose-derived MSCs. Industrial funding was the highest for North American centers (90.5%). CONCLUSIONS: Strengthening of international standards and statements with institutional, federal and industrial partners is necessary. More connections would facilitate the transfer of knowledge, sharing of resources, mobility of researchers and advancement of trials. Developing partnerships between industry and academic centers seems beneficial to the advancement of trials across different phases and would facilitate the translation of research discoveries.


Asunto(s)
Investigación Biomédica/estadística & datos numéricos , Células Madre Mesenquimatosas , Tejido Adiposo/citología , Asia , Investigación Biomédica/organización & administración , Células de la Médula Ósea/citología , Ensayos Clínicos como Asunto/estadística & datos numéricos , Europa (Continente) , Humanos , Cooperación Internacional , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , América del Norte , Medicina Regenerativa/métodos , Apoyo Social , Análisis Espacio-Temporal
7.
J Cell Mol Med ; 20(4): 655-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26773707

RESUMEN

Similar to other adult tissue stem/progenitor cells, bone marrow mesenchymal stem/stromal cells (BM MSCs) exhibit heterogeneity at the phenotypic level and in terms of proliferation and differentiation potential. In this study such a heterogeneity was reflected by the CD200 protein. We thus characterized CD200(pos) cells sorted from whole BM MSC cultures and we investigated the molecular mechanisms regulating CD200 expression. After sorting, measurement of lineage markers showed that the osteoblastic genes RUNX2 and DLX5 were up-regulated in CD200(pos) cells compared to CD200(neg) fraction. At the functional level, CD200(pos) cells were prone to mineralize the extra-cellular matrix in vitro after sole addition of phosphates. In addition, osteogenic cues generated by bone morphogenetic protein 4 (BMP4) or BMP7 strongly induced CD200 expression. These data suggest that CD200 expression is related to commitment/differentiation towards the osteoblastic lineage. Immunohistochemistry of trephine bone marrow biopsies further corroborates the osteoblastic fate of CD200(pos) cells. However, when dexamethasone was used to direct osteogenic differentiation in vitro, CD200 was consistently down-regulated. As dexamethasone has anti-inflammatory properties, we assessed the effects of different immunological stimuli on CD200 expression. The pro-inflammatory cytokines interleukin-1ß and tumour necrosis factor-α increased CD200 membrane expression but down-regulated osteoblastic gene expression suggesting an additional regulatory pathway of CD200 expression. Surprisingly, whatever the context, i.e. pro-inflammatory or pro-osteogenic, CD200 expression was down-regulated when nuclear-factor (NF)-κB was inhibited by chemical or adenoviral agents. In conclusion, CD200 expression by cultured BM MSCs can be induced by both osteogenic and pro-inflammatory cytokines through the same pathway: NF-κB.


Asunto(s)
Antígenos CD/genética , Células de la Médula Ósea/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , FN-kappa B/genética , Osteoblastos/efectos de los fármacos , Adulto , Antígenos CD/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Proteína Morfogenética Ósea 4/farmacología , Proteína Morfogenética Ósea 7/farmacología , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Dexametasona/farmacología , Matriz Extracelular/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Interleucina-1beta/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , FN-kappa B/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Fosfatos/farmacología , Cultivo Primario de Células , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
8.
J Transl Med ; 14: 93, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27080531

RESUMEN

BACKGROUND: An efficient strategy for programming dendritic cells (DCs) for cancer immunotherapy is the optimization of their maturation so that they can efficiently stimulate cancer-specific T cell responses. Interleukin (IL)-4 has appeared as an essential cytokine, widely used in vitro with granulocyte macrophage-colony stimulating factor (GM-CSF) to differentiate monocytes into immature DCs (iDC) and to prevent macrophage formation. Conflicting data have been published regarding the effect of IL-4 on functional DC maturation. To further understand IL-4's effects on DC maturation and function in vitro, we choose the most commonly used maturation factor tumor necrosis factor (TNF)-α. METHODS: Human monocyte-derived iDC were treated for 48 h with GM-CSF and TNF-α in the presence (IL-4(+)-DC) or absence (IL-4(-)-DC) of IL-4 and functions of both DC populations were compared. RESULTS: On mixed lymphocyte reaction assay, IL-4(+)-DC were less potent than IL-4(-)-DC at inducing the proliferation of allogeneic CD4(+) T cells and the proportion of activated T cells expressing CD69 and/or CD25 was smaller. Interleukin-4 reduced the cell-surface expression of TNF-α-induced DC maturation markers CD83, CD86, HLA-DR and CD25 and generated a heterogeneous population of DCs. IL-4(+)-DC secreted less IL-12 and more IL-10 than IL-4(-)-DC following activation by soluble CD40L, and IL-4(+)-DC-activated T cells secreted lesser amounts of T helper (Th) 1 cytokines (IL-2 and interferon-γ). Importantly, IL-4 impaired the in vitro migratory capacity of DCs in response to CCL21 and CCL19 chemokines. This effect was related to reduced expression of CCR7 at both mRNA and protein levels. CONCLUSION: Interleukin-4 used with GM-CSF and TNF-α during the maturation of DCs in vitro impaired DC functions and disturbed the maturation effect of TNF-α. Finally, our study reinforces the view that the quality of the DC maturation stimulus, which regulates DC migration and cytokine production, may be a decisive feature of the immunogenicity of DCs.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Dendríticas/citología , Factor de Necrosis Tumoral alfa/farmacología , Biomarcadores/metabolismo , Linfocitos T CD4-Positivos/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quimiocinas/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Humanos , Interleucina-12/metabolismo , Interleucina-4/metabolismo , Activación de Linfocitos/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CCR7/genética , Receptores CCR7/metabolismo , Células TH1/efectos de los fármacos
9.
Stem Cells ; 33(12): 3608-20, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26422646

RESUMEN

Long-term cultures under hypoxic conditions have been demonstrated to maintain the phenotype of mesenchymal stromal/stem cells (MSCs) and to prevent the emergence of senescence. According to several studies, hypoxia has frequently been reported to drive genomic instability in cancer cells and in MSCs by hindering the DNA damage response and DNA repair. Thus, we evaluated the occurrence of DNA damage and repair events during the ex vivo expansion of clinical-grade adipose-derived stromal cells (ADSCs) and bone marrow (BM)-derived MSCs cultured with platelet lysate under 21% (normoxia) or 1% (hypoxia) O2 conditions. Hypoxia did not impair cell survival after DNA damage, regardless of MSC origin. However, ADSCs, unlike BM-MSCs, displayed altered γH2AX signaling and increased ubiquitylated γH2AX levels under hypoxic conditions, indicating an impaired resolution of DNA damage-induced foci. Moreover, hypoxia specifically promoted BM-MSC DNA integrity, with increased Ku80, TP53BP1, BRCA1, and RAD51 expression levels and more efficient nonhomologous end joining and homologous recombination repair. We further observed that hypoxia favored mtDNA stability and maintenance of differentiation potential after genotoxic stress. We conclude that long-term cultures under 1% O2 were more suitable for BM-MSCs as suggested by improved genomic stability compared with ADSCs.


Asunto(s)
Tejido Adiposo/metabolismo , Daño del ADN , Inestabilidad Genómica , Células Madre Mesenquimatosas/metabolismo , Reparación del ADN por Recombinación , Tejido Adiposo/patología , Adulto , Técnicas de Cultivo de Célula , Hipoxia de la Célula , Femenino , Humanos , Células Madre Mesenquimatosas/patología , Factores de Tiempo
10.
Cytotherapy ; 18(5): 613-20, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27059199

RESUMEN

Mesenchymal stromal cells (MSCs) are being experimentally tested in several biological systems and clinical settings with the aim of verifying possible therapeutic effects for a variety of indications. MSCs are also known to be heterogeneous populations, with phenotypic and functional features that depend heavily on the individual donor, the harvest site, and the culture conditions. In the context of this multidimensional complexity, a recurrent question is whether it is feasible to produce MSC batches as "standard" therapeutics, possibly within scalable manufacturing systems. Here, we provide a short overview of the literature on different culture methods for MSCs, including those employing innovative technologies, and of some typically assessed functional features (e.g., growth, senescence, genomic stability, clonogenicity, etc.). We then offer our perspective of a roadmap on how to identify and refine manufacturing systems for MSCs intended for specific clinical indications. We submit that the vision of producing MSCs according to a unique standard, although commercially attractive, cannot yet be scientifically substantiated. Instead, efforts should be concentrated on standardizing methods for characterization of MSCs generated by different groups, possibly covering a vast gamut of functionalities. Such assessments, combined with hypotheses on the therapeutic mode of action and associated clinical data, should ultimately allow definition of in-process controls and measurable release criteria for MSC manufacturing. These will have to be validated as predictive of potency in suitable pre-clinical models and of therapeutic efficacy in patients.


Asunto(s)
Técnicas de Cultivo de Célula , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Senescencia Celular/fisiología , Femenino , Humanos , Persona de Mediana Edad
11.
Cytotherapy ; 18(2): 151-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26724220

RESUMEN

Mesenchymal stromal cells (MSCs) as a pharmaceutical for ailments characterized by pathogenic autoimmune, alloimmune and inflammatory processes now cover the spectrum of early- to late-phase clinical trials in both industry and academic sponsored studies. There is a broad consensus that despite different tissue sourcing and varied culture expansion protocols, human MSC-like cell products likely share fundamental mechanisms of action mediating their anti-inflammatory and tissue repair functionalities. Identification of functional markers of potency and reduction to practice of standardized, easily deployable methods of measurements of such would benefit the field. This would satisfy both mechanistic research as well as development of release potency assays to meet Regulatory Authority requirements for conduct of advanced clinical studies and their eventual registration. In response to this unmet need, the International Society for Cellular Therapy (ISCT) addressed the issue at an international workshop in May 2015 as part of the 21st ISCT annual meeting in Las Vegas. The scope of the workshop was focused on discussing potency assays germane to immunomodulation by MSC-like products in clinical indications targeting immune disorders. We here provide consensus perspective arising from this forum. We propose that focused analysis of selected MSC markers robustly deployed by in vitro licensing and metricized with a matrix of assays should be responsive to requirements from Regulatory Authorities. Workshop participants identified three preferred analytic methods that could inform a matrix assay approach: quantitative RNA analysis of selected gene products; flow cytometry analysis of functionally relevant surface markers and protein-based assay of secretome. We also advocate that potency assays acceptable to the Regulatory Authorities be rendered publicly accessible in an "open-access" manner, such as through publication or database collection.


Asunto(s)
Bioensayo/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Biomarcadores/metabolismo , Citometría de Flujo/métodos , Humanos
12.
Aesthet Surg J ; 36(5): 609-18, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26530477

RESUMEN

BACKGROUND: Liposuction is a very popular technique in plastic surgery that allows for the taking adipose tissue (AT) on large surfaces with little risk of morbidity. Although liposuction was previously shown to preserve large perforator vessels, little is known about the effects of liposuction on the microvasculature network. OBJECTIVES: The aim of this study was to analyze the effect of liposuction on the preservation of microvessels at tissue and cellular levels by flow cytometry and confocal microscopy following abdominoplasty procedure. METHODS: Percentage of endothelial cells in AT from liposuction and en bloc AT was determined by multicolor flow cytometry. Moreover, vessel density and adipocyte content were analyzed in situ in 3 different types of AT (en bloc, from liposuction, and residual AT after liposuction) by confocal microscopy. RESULTS: Flow cytometric analysis showed that en bloc AT contained 30.6% ± 12.9% and AT from liposuction 21.6% ± 9.9% of endothelial cells (CD31(pos)/CD45(neg)/CD235a(neg)/CD11b(neg)) (P = .009). Moreover, analysis of paired AT from the same patients (n = 5) confirmed a lower percentage of endothelial cells in AT from liposuction compared to en bloc AT (17.7% ± 4.5% vs 21.9% ± 3.3%, P = .031). Likewise, confocal microscopy showed that en bloc AT contained 8.2% ± 6.3%, AT from liposuction only 1.6% ± 1.0% (P < .0001), and AT after liposuction 8.9% ± 4.1% (P = .111) of CD31(pos) vessels. Conversely, adipocyte content was 39.5% ± 14.5% in the en bloc AT, 45% ± 18.4% in AT from liposuction (P = .390), and 18.8 ± 14.8% in AT after liposuction (P = .011). CONCLUSIONS: For the first time, we demonstrate that liposuction preserves the microvascular network. Indeed, a low percentage of endothelial cells was found in AT from liposuction and we confirm the persistence of microvessels in the tissue after liposuction.


Asunto(s)
Adipocitos/fisiología , Tejido Adiposo/citología , Células Endoteliales/fisiología , Lipectomía/métodos , Microvasos/fisiología , Abdominoplastia/métodos , Tejido Adiposo/patología , Adulto , Femenino , Citometría de Flujo , Humanos , Masculino , Microscopía Confocal , Microvasos/diagnóstico por imagen , Microvasos/cirugía , Persona de Mediana Edad
13.
J Cell Mol Med ; 18(1): 104-14, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24188055

RESUMEN

Bone marrow mesenchymal stem cells (MSCs) are plastic adherent cells that can differentiate into various tissue lineages, including osteoblasts, adipocytes and chondrocytes. However, this progenitor property is not shared by all cells within the MSC population. In addition, MSCs vary in their proliferation capacity and expression of markers. Because of heterogeneity of CD146 expression in the MSC population, we compared CD146(-/Low) and CD146(High) cells under clonal conditions and after sorting of the non-clonal cell population to determine whether this expression is associated with specific functions. CD146(-/Low) and CD146(High) bone marrow MSCs did not differ in colony-forming unit-fibroblast number, osteogenic, adipogenic and chondrogenic differentiation or in vitro haematopoietic-supportive activity. However, CD146(-/Low) clones proliferated slightly but significantly faster than did CD146(High) clones. In addition, a strong expression of CD146 molecule was associated with a commitment to a vascular smooth muscle cell (VSMC) lineage characterized by a strong up-regulation of calponin-1 and SM22α expression and an ability to contract collagen matrix. Thus, within a bone marrow MSC population, certain subpopulations characterized by high expression of CD146, are committed towards a VSMC lineage.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/fisiología , Miocitos del Músculo Liso/metabolismo , Antígeno CD146/metabolismo , Proliferación Celular , Separación Celular , Células Cultivadas , Factor 2 de Crecimiento de Fibroblastos/fisiología , Humanos , Datos de Secuencia Molecular , Músculo Liso Vascular/citología , Fenotipo , Transcriptoma , Factor de Crecimiento Transformador beta1/fisiología
14.
Stem Cells ; 31(11): 2296-303, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23922260

RESUMEN

Both human leukocyte antigen G (HLA-G) and multipotential mesenchymal stem/stromal cells (MSCs) exhibit immunomodulatory functions. In allogeneic tranplantation, the risks of acute and chronic rejection are still high despite improvement in immunosuppressive treatments, and the induction of a state of tolerance to alloantigens is not achieved. Immunomodulatory properties of MSCs and HLA-G in human allogeneic tranplantation to induce tolerance appears attractive and promising. Interestingly, we and others have demonstrated that MSCs can express HLA-G. In this review, we focus on the expression of HLA-G by MSCs and discuss how to ensure and improve the immunomodulatory properties of MSCs by selectively targeting MSCs expressing HLA-G (MSCs(HLA-G+)). We also discuss the possible uses of MSCs(HLA-G+) for therapeutic purposes, notably, to overcome acute and chronic immune rejection in solid-organ allogeneic transplantation in humans. Since MSCs are phenotypically and functionally heterogeneous, it is of primary interest to have specific markers ensuring that they have strong immunosuppressive potential and HLA-G may be a valuable candidate.


Asunto(s)
Terapia Biológica/métodos , Antígenos HLA-G/inmunología , Terapia de Inmunosupresión/métodos , Células Madre Mesenquimatosas/inmunología , Animales , Antígenos HLA-G/biosíntesis , Humanos , Inmunosupresores/inmunología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Inmunología del Trasplante , Trasplante Homólogo/métodos
15.
FASEB J ; 27(8): 2977-87, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23592762

RESUMEN

Bone-marrow mesenchymal stem cells (MSCs) are the origin of bone-forming cells with immunomodulation potential. HLA-G5 is among the generated immunosuppressive molecules. HLA-G proteins play a crucial role in promoting the acceptance of allografts. However, the mechanisms regulating the expression of HLA-G5 in human MSCs are unknown. We induced differentiation of MSCs and found that HLA-G5 was greatly up-regulated only in osteoblastic cells (+63% for mRNA). Growth plates and bone callus postfracture in adults showed that only bone-lining cells and mesenchymal progenitors were positive for HLA-G5. Use of gene silencing and dominant-negative factors revealed that HLA-G5 depends on the expression and function of the skeletogenesis master genes RUNX2 and DLX5. In addition, HLA-G5 could directly inhibit osteoclastogenesis by acting on monocytes through SHP1. However, in mature osteoblasts, the expression of HLA-G5 protein was greatly suppressed whereas the proosteoclastogenic factor, RANKL, was concomitantly increased. Down-regulation of HLA-G5 expression during the maturation of osteoblasts was due to binding of the repressor GLI3, a signal transducer of the Hedgehog pathway, to the GLI binding element within the HLA-G promoter. Our findings show that mesenchymal progenitors and osteoblastic cells specifically express HLA-G5 during osteogenesis, with a key role in bone homeostasis.


Asunto(s)
Huesos/metabolismo , Antígenos HLA-G/genética , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Osteogénesis/genética , Adulto , Huesos/citología , Línea Celular Tumoral , Linaje de la Célula/genética , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación de la Expresión Génica , Antígenos HLA-G/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Homeostasis/genética , Humanos , Inmunohistoquímica , Microscopía Fluorescente , Modelos Genéticos , Osteoblastos/citología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
BMC Biotechnol ; 13: 35, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23586982

RESUMEN

BACKGROUND: Deliberate cellular reprogramming is becoming a realistic objective in the clinic. While the origin of the target cells is critical, delivery of bioactive molecules to trigger a shift in cell-fate remains the major hurdle. To date, several strategies based either on non-integrative vectors, protein transfer or mRNA delivery have been investigated. In a recent study, a unique modification in the retroviral genome was shown to enable RNA transfer and its expression. RESULTS: Here, we used the retroviral mRNA delivery approach to study the impact of modifying gene-flanking sequences on RNA transfer. We designed modified mRNAs for retroviral packaging and used the quantitative luciferase assay to compare mRNA expression following viral transduction of cells. Cloning the untranslated regions of the vimentin or non-muscular myosin heavy chain within transcripts improved expression and stability of the reporter gene while slightly modifying reporter-RNA retroviral delivery. We also observed that while the modified retroviral platform was the most effective for retroviral mRNA packaging, the highest expression in target cells was achieved by the addition of a non-viral UTR to mRNAs containing the packaging signal. CONCLUSIONS: Through molecular engineering we have assayed a series of constructs to improve retroviral mRNA transfer. We showed that an authentic RNA retroviral genomic platform was most efficiently transferred but that adding UTR sequences from highly expressed genes could improve expression upon transfection while having only a slight effect on expression from transferred RNA. Together, these data should contribute to the optimisation of retroviral mRNA-delivery systems that test combinations of UTRs and packaging platforms.


Asunto(s)
ARN Mensajero/metabolismo , Retroviridae/genética , Expresión Génica , Genes Reporteros , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Cadenas Pesadas de Miosina/genética , Estabilidad del ARN , ARN Mensajero/genética , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección , Regiones no Traducidas , Vimentina/genética , Virión/genética , Virión/metabolismo
17.
Cytotherapy ; 15(2): 140-5, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23321325

RESUMEN

Nearly half a century has passed since the publication of the first articles describing plastic-adherent cells from bone marrow, referred to initially as colony-forming unit fibroblasts, then marrow stromal cells, mesenchymal stem cells and most recently multipotent mesenchymal stromal cells (MSCs). As expected, our understanding of the nature and biologic functions of MSCs has undergone major paradigm shifts over this time. Despite significant advances made in deciphering their complex biology and therapeutic potential in both experimental animal models and human clinical trials, numerous misconceptions regarding the nature and function of MSCs have persisted in the field. Continued propagation of these misconceptions in some cases may significantly impede the advancement of MSC-based therapies in clinical medicine. We have identified six prevalent misconceptions about MSCs that we believe affect the field, and we attempt to rectify them based on current available data.


Asunto(s)
Células Madre Mesenquimatosas/citología , Células Madre Multipotentes/citología , Células del Estroma/citología , Animales , Ensayos Clínicos como Asunto , Humanos , Ratones , Células Madre
18.
Cytotherapy ; 15(9): 1054-61, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23602578

RESUMEN

Cultured mesenchymal stromal cells (MSCs) possess immune regulatory properties and are already used for clinical purposes, although preclinical data (both in vitro and in vivo in animal models) are not always homogeneous and unequivocal. However, the various MSC-based clinical approaches to treat immunological diseases would be significantly validated and strengthened by using standardized immune assays aimed at obtaining shared, reproducible and consistent data. Thus, the MSC Committee of the International Society for Cellular Therapy has decided to put forward for general discussion a working proposal for a standardized approach based on a critical view of literature data.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Madre Mesenquimatosas/inmunología , Células Madre Multipotentes/inmunología , Animales , Humanos
19.
Cytotherapy ; 15(7): 753-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23602595

RESUMEN

In the past decade, the therapeutic value of mesenchymal stromal cells (MSCs) has been studied in various indications, thereby taking advantage of their immunosuppressive properties. Easy procurement from bone marrow, adipose tissue or other sources and conventional in vitro expansion culture have made their clinical use attractive. Bridging the gap between current scientific knowledge and regulatory prospects on the transformation potential and possible tumorigenicity of MSCs, the Cell Products Working Party and the Committee for Advanced Therapies organized a meeting with leading European experts in the field of MSCs. This meeting elucidated the risk of potential tumorigenicity related to MSC-based therapies from two angles: the scientific perspective and the regulatory point of view. The conclusions of this meeting, including the current regulatory thinking on quality, nonclinical and clinical aspects for MSCs, are presented in this review, leading to a clearer way forward for the development of such products.


Asunto(s)
Carcinogénesis , Proliferación Celular , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Células Madre Mesenquimatosas/citología , Tejido Adiposo/citología , Células de la Médula Ósea/citología , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Humanos , Células Madre Mesenquimatosas/metabolismo
20.
Blood ; 115(8): 1549-53, 2010 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-20032501

RESUMEN

Clinical-grade human mesenchymal stromal cells (MSCs) have been expanded in vitro for tissue engineering or immunoregulatory purposes without standardized culture conditions or release criteria. Although human MSCs show poor susceptibility for oncogenic transformation, 2 recent studies described their capacity to accumulate chromosomal instability and to give rise to carcinoma in immunocompromised mice after long-term culture. We thus investigated the immunologic and genetic features of MSCs expanded with fetal calf serum and fibroblast growth factor or with platelet lysate in 4 cell-therapy facilities during 2 multicenter clinical trials. Cultured MSCs showed a moderate expression of human leukocyte antigen-DR without alteration of their low immunogenicity or their immunomodulatory capacity. Moreover, some transient and donor-dependent recurring aneuploidy was detected in vitro, independently of the culture process. However, MSCs with or without chromosomal alterations showed progressive growth arrest and entered senescence without evidence of transformation either in vitro or in vivo.


Asunto(s)
Aneuploidia , Separación Celular/métodos , Transformación Celular Neoplásica , Células del Estroma/citología , Técnicas de Cultivo de Célula , Regulación de la Expresión Génica , Antígenos HLA-DR/biosíntesis , Humanos , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA