Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 43(Database issue): D439-46, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378310

RESUMEN

The BRENDA enzyme information system (http://www.brenda-enzymes.org/) has developed into an elaborate system of enzyme and enzyme-ligand information obtained from different sources, combined with flexible query systems and evaluation tools. The information is obtained by manual extraction from primary literature, text and data mining, data integration, and prediction algorithms. Approximately 300 million data include enzyme function and molecular data from more than 30,000 organisms. The manually derived core contains 3 million data from 77,000 enzymes annotated from 135,000 literature references. Each entry is connected to the literature reference and the source organism. They are complemented by information on occurrence, enzyme/disease relationships from text mining, sequences and 3D structures from other databases, and predicted enzyme location and genome annotation. Functional and structural data of more than 190,000 enzyme ligands are stored in BRENDA. New features improving the functionality and analysis tools were implemented. The human anatomy atlas CAVEman is linked to the BRENDA Tissue Ontology terms providing a connection between anatomical and functional enzyme data. Word Maps for enzymes obtained from PubMed abstracts highlight application and scientific relevance of enzymes. The EnzymeDetector genome annotation tool and the reaction database BKM-react including reactions from BRENDA, KEGG and MetaCyc were improved. The website was redesigned providing new query options.


Asunto(s)
Bases de Datos de Proteínas , Enzimas/química , Enzimas/metabolismo , Enzimas/genética , Humanos , Internet , Ligandos
2.
J Proteome Res ; 15(9): 3108-17, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27436081

RESUMEN

Plants belonging to the genus Nepenthes are carnivorous, using specialized pitfall traps called "pitchers" that attract, capture, and digest insects as a primary source of nutrients. We have used RNA sequencing to generate a cDNA library from the Nepenthes pitchers and applied it to mass spectrometry-based identification of the enzymes secreted into the pitcher fluid using a nonspecific digestion strategy superior to trypsin in this application. This first complete catalog of the pitcher fluid subproteome includes enzymes across a variety of functional classes. The most abundant proteins present in the secreted fluid are proteases, nucleases, peroxidases, chitinases, a phosphatase, and a glucanase. Nitrogen recovery involves a particularly rich complement of proteases. In addition to the two expected aspartic proteases, we discovered three novel nepenthensins, two prolyl endopeptidases that we name neprosins, and a putative serine carboxypeptidase. Additional proteins identified are relevant to pathogen-defense and secretion mechanisms. The full complement of acid-stable enzymes discovered in this study suggests that carnivory in the genus Nepenthes can be sustained by plant-based mechanisms alone and does not absolutely require bacterial symbiosis.


Asunto(s)
Sarraceniaceae/enzimología , Animales , Digestión , Enzimas/análisis , Conducta Alimentaria , Biblioteca de Genes , Insectos/metabolismo , Espectrometría de Masas , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Proteoma/análisis , Sarraceniaceae/metabolismo
3.
J Biol Chem ; 290(30): 18770-81, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26037923

RESUMEN

Plant genomes contain a large number of genes encoding for berberine bridge enzyme (BBE)-like enzymes. Despite the widespread occurrence and abundance of this protein family in the plant kingdom, the biochemical function remains largely unexplored. In this study, we have expressed two members of the BBE-like enzyme family from Arabidopsis thaliana in the host organism Komagataella pastoris. The two proteins, termed AtBBE-like 13 and AtBBE-like 15, were purified, and their catalytic properties were determined. In addition, AtBBE-like 15 was crystallized and structurally characterized by x-ray crystallography. Here, we show that the enzymes catalyze the oxidation of aromatic allylic alcohols, such as coumaryl, sinapyl, and coniferyl alcohol, to the corresponding aldehydes and that AtBBE-like 15 adopts the same fold as vanillyl alcohol oxidase as reported previously for berberine bridge enzyme and other FAD-dependent oxidoreductases. Further analysis of the substrate range identified coniferin, the glycosylated storage form of coniferyl alcohol, as a substrate of the enzymes, whereas other glycosylated monolignols were rather poor substrates. A detailed analysis of the motifs present in the active sites of the BBE-like enzymes in A. thaliana suggested that 14 out of 28 members of the family might catalyze similar reactions. Based on these findings, we propose a novel role of BBE-like enzymes in monolignol metabolism that was previously not recognized for this enzyme family.


Asunto(s)
Proteínas de Arabidopsis/química , Pared Celular/enzimología , Lignina/metabolismo , Oxidorreductasas N-Desmetilantes/química , Oxidorreductasas N-Desmetilantes/metabolismo , Secuencia de Aminoácidos , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Cinética , Oxidación-Reducción , Oxidorreductasas N-Desmetilantes/genética , Estructura Terciaria de Proteína , Especificidad por Sustrato
4.
BMC Plant Biol ; 15: 227, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26384972

RESUMEN

BACKGROUND: Benzylisoquinoline alkaloids (BIAs) represent a diverse class of plant specialized metabolites sharing a common biosynthetic origin beginning with tyrosine. Many BIAs have potent pharmacological activities, and plants accumulating them boast long histories of use in traditional medicine and cultural practices. The decades-long focus on a select number of plant species as model systems has allowed near or full elucidation of major BIA pathways, including those of morphine, sanguinarine and berberine. However, this focus has created a dearth of knowledge surrounding non-model species, which also are known to accumulate a wide-range of BIAs but whose biosynthesis is thus far entirely unexplored. Further, these non-model species represent a rich source of catalyst diversity valuable to plant biochemists and emerging synthetic biology efforts. RESULTS: In order to access the genetic diversity of non-model plants accumulating BIAs, we selected 20 species representing 4 families within the Ranunculales. RNA extracted from each species was processed for analysis by both 1) Roche GS-FLX Titanium and 2) Illumina GA/HiSeq platforms, generating a total of 40 deep-sequencing transcriptome libraries. De novo assembly, annotation and subsequent full-length coding sequence (CDS) predictions indicated greater success for most species using the Illumina-based platform. Assembled data for each transcriptome were deposited into an established web-based BLAST portal ( www.phytometasyn.ca) to allow public access. Homology-based mining of libraries using BIA-biosynthetic enzymes as queries yielded ~850 gene candidates potentially involved in alkaloid biosynthesis. Expression analysis of these candidates was performed using inter-library FPKM normalization methods. These expression data provide a basis for the rational selection of gene candidates, and suggest possible metabolic bottlenecks within BIA metabolism. Phylogenetic analysis was performed for each of 15 different enzyme/protein groupings, highlighting many novel genes with potential involvement in the formation of one or more alkaloid types, including morphinan, aporphine, and phthalideisoquinoline alkaloids. Transcriptome resources were used to design and execute a case study of candidate N-methyltransferases (NMTs) from Glaucium flavum, which revealed predicted and novel enzyme activities. CONCLUSIONS: This study establishes an essential resource for the isolation and discovery of 1) functional homologues and 2) entirely novel catalysts within BIA metabolism. Functional analysis of G. flavum NMTs demonstrated the utility of this resource and underscored the importance of empirical determination of proposed enzymatic function. Publically accessible, fully annotated, BLAST-accessible transcriptomes were not previously available for most species included in this report, despite the rich repertoire of bioactive alkaloids found in these plants and their importance to traditional medicine. The results presented herein provide essential sequence information and inform experimental design for the continued elucidation of BIA metabolism.


Asunto(s)
Alcaloides/metabolismo , Bencilisoquinolinas/metabolismo , Magnoliopsida/genética , Proteínas de Plantas/genética , Transcriptoma , Berberidaceae/genética , Berberidaceae/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Magnoliopsida/metabolismo , Menispermaceae/genética , Menispermaceae/metabolismo , Datos de Secuencia Molecular , Papaveraceae/genética , Papaveraceae/metabolismo , Proteínas de Plantas/metabolismo , Ranunculaceae/genética , Ranunculaceae/metabolismo , Análisis de Secuencia de ADN
5.
Appl Environ Microbiol ; 81(19): 6825-38, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26209669

RESUMEN

Oil sands are surface exposed in river valley outcrops in northeastern Alberta, where flat slabs (tablets) of weathered, bitumen-saturated sandstone can be retrieved from outcrop cliffs or from riverbeds. Although the average yearly surface temperature of this region is low (0.7°C), we found that the temperatures of the exposed surfaces of outcrop cliffs reached 55 to 60°C on sunny summer days, with daily maxima being 27 to 31°C. Analysis of the cooccurrence of taxa derived from pyrosequencing of 16S/18S rRNA genes indicated that an aerobic microbial network of fungi and hydrocarbon-, methane-, or acetate-oxidizing heterotrophic bacteria was present in all cliff tablets. Metagenomic analyses indicated an elevated presence of fungal cytochrome P450 monooxygenases in these samples. This network was distinct from the heterotrophic community found in riverbeds, which included fewer fungi. A subset of cliff tablets had a network of anaerobic and/or thermophilic taxa, including methanogens, Firmicutes, and Thermotogae, in the center. Long-term aerobic incubation of outcrop samples at 55°C gave a thermophilic microbial community. Analysis of residual bitumen with a Fourier transform ion cyclotron resonance mass spectrometer indicated that aerobic degradation proceeded at 55°C but not at 4°C. Little anaerobic degradation was observed. These results indicate that bitumen degradation on outcrop surfaces is a largely aerobic process with a minor anaerobic contribution and is catalyzed by a consortium of bacteria and fungi. Bitumen degradation is stimulated by periodic high temperatures on outcrop cliffs, which cause significant decreases in bitumen viscosity.


Asunto(s)
Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Hidrocarburos/metabolismo , Yacimiento de Petróleo y Gas/microbiología , Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , Frío , Hongos/clasificación , Hongos/genética , Consorcios Microbianos , Datos de Secuencia Molecular , Filogenia , Ríos/química , Ríos/microbiología , Temperatura
6.
BMC Bioinformatics ; 15: 229, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24980894

RESUMEN

BACKGROUND: Locating the protein-coding genes in novel genomes is essential to understanding and exploiting the genomic information but it is still difficult to accurately predict all the genes. The recent availability of detailed information about transcript structure from high-throughput sequencing of messenger RNA (RNA-Seq) delineates many expressed genes and promises increased accuracy in gene prediction. Computational gene predictors have been intensively developed for and tested in well-studied animal genomes. Hundreds of fungal genomes are now or will soon be sequenced. The differences of fungal genomes from animal genomes and the phylogenetic sparsity of well-studied fungi call for gene-prediction tools tailored to them. RESULTS: SnowyOwl is a new gene prediction pipeline that uses RNA-Seq data to train and provide hints for the generation of Hidden Markov Model (HMM)-based gene predictions and to evaluate the resulting models. The pipeline has been developed and streamlined by comparing its predictions to manually curated gene models in three fungal genomes and validated against the high-quality gene annotation of Neurospora crassa; SnowyOwl predicted N. crassa genes with 83% sensitivity and 65% specificity. SnowyOwl gains sensitivity by repeatedly running the HMM gene predictor Augustus with varied input parameters and selectivity by choosing the models with best homology to known proteins and best agreement with the RNA-Seq data. CONCLUSIONS: SnowyOwl efficiently uses RNA-Seq data to produce accurate gene models in both well-studied and novel fungal genomes. The source code for the SnowyOwl pipeline (in Python) and a web interface (in PHP) is freely available from http://sourceforge.net/projects/snowyowl/.


Asunto(s)
Genes Fúngicos , Anotación de Secuencia Molecular/métodos , ARN de Hongos/genética , Análisis de Secuencia de ARN/métodos , Genoma Fúngico , Genómica/métodos , Cadenas de Markov , Modelos Genéticos , Programas Informáticos
7.
Genome ; 56(10): 599-611, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24237341

RESUMEN

A microbial community (short-chain alkane-degrading culture, SCADC) enriched from an oil sands tailings pond was shown to degrade C6-C10 alkanes under methanogenic conditions. Total genomic DNA from SCADC was subjected to 454 pyrosequencing, Illumina paired-end sequencing, and 16S rRNA amplicon pyrotag sequencing; the latter revealed 320 operational taxonomic units at 5% distance. Metagenomic sequences were subjected to in-house quality control and co-assembly, yielding 984 086 contigs, and annotation using MG-Rast and IMG. Substantial nucleotide and protein recruitment to Methanosaeta concilii, Syntrophus aciditrophicus, and Desulfobulbus propionicus reference genomes suggested the presence of closely related strains in SCADC; other genomes were not well mapped, reflecting the paucity of suitable reference sequences for such communities. Nonetheless, we detected numerous homologues of putative hydrocarbon succinate synthase genes (e.g., assA, bssA, and nmsA) implicated in anaerobic hydrocarbon degradation, suggesting the ability of the SCADC microbial community to initiate methanogenic alkane degradation by addition to fumarate. Annotation of a large contig revealed analogues of the ass operon 1 in the alkane-degrading sulphate-reducing bacterium Desulfatibacillum alkenivorans AK-01. Despite being enriched under methanogenic-fermentative conditions, additional metabolic functions inferred by COG profiling indicated multiple CO(2) fixation pathways, organic acid utilization, hydrogenase activity, and sulphate reduction.


Asunto(s)
Alcanos/metabolismo , Bacterias Anaerobias/genética , Euryarchaeota/genética , Hidrocarburos/metabolismo , Metagenoma , Yacimiento de Petróleo y Gas/microbiología , Anaerobiosis , Bacterias Anaerobias/metabolismo , Biodegradación Ambiental , Biología Computacional , Euryarchaeota/metabolismo , Genes Arqueales , Genes Bacterianos , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Operón , Filogenia , ARN Ribosómico 16S/genética , Transducción de Señal
8.
Genome ; 56(4): 215-25, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23706074

RESUMEN

To investigate the role of gene localization and genome organization in cell-cell signalling and regulation, we mapped the distribution pattern of gene families that comprise core components of intercellular communication networks. Our study is centered on the distinct evolutionarily conserved metazoan signalling pathways that employ proteins in the receptor tyrosine kinase, WNT, hedgehog, NOTCH, Janus kinase/STAT, transforming growth factor beta, and nuclear hormone receptor protein families. Aberrant activity of these signalling pathways is closely associated with the promotion and maintenance of human cancers. The cataloguing and mapping of genes encoding these signalling proteins and comparisons across species has led us to propose that the genome can be subdivided into six genome-wide primary linkage groups (PLGs). PLGs are composed of assemblages of gene families that are often mutually exclusive, raising the possibility of unique functional identities for each group. Examination of the localization patterns of genes with distinct functions in signal transduction demonstrates dichotomous segregation patterns. For example, gene families of cell-surface receptors localize to genomic compartments that are distinct from the locations of their cognate ligand gene families. Additionally, genes encoding negative-acting components of signalling pathways (inhibitors and antagonists) are topologically separated from their positive regulators and other signal transducer genes. We, therefore, propose the existence of conserved genomic territories that encode key proteins required for the proper activity of metazoan signaling and regulatory systems. Disruption in this pattern of topologic genomic organization may contribute to aberrant regulation in hereditary or acquired diseases such as cancer. We further propose that long-range looping genomic regulatory interactions may provide a mechanism favouring the remarkable retention of these conserved gene clusters during chordate evolution.


Asunto(s)
Aves/genética , Sitios Genéticos , Mamíferos/genética , Familia de Multigenes , Transducción de Señal/genética , Animales , Ligamiento Genético , Humanos
9.
Genome ; 56(10): 612-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24237342

RESUMEN

Oil sands tailings ponds harbor large amounts of tailings resulting from surface mining of bitumen and consist of water, sand, clays, residual bitumen, and hydrocarbon diluent. Oxygen ingress in these ponds is limited to the surface layers, causing most hydrocarbon degradation to be catalyzed by anaerobic, methanogenic microbial communities. This causes the evolution of large volumes of methane of up to 10(4) m(3)/day. A pyrosequencing survey of 16S rRNA amplicons from 10 samples obtained from different depths indicated the presence of a wide variety of taxa involved in anaerobic hydrocarbon degradation and methanogenesis, including the phyla Proteobacteria, Euryarchaeota, Firmicutes, Actinobacteria, Chloroflexi, and Bacteroidetes. Metagenomic sequencing of DNA isolated from one of these samples indicated a more diverse community than indicated by the 16S rRNA amplicon survey. Both methods indicated the same major phyla to be present. The metagenomic dataset indicated the presence of genes involved in the three stages of anaerobic aromatic hydrocarbon degradation, including genes for enzymes of the peripheral (upper), the central (lower), and the methanogenesis pathways. Upper pathway genes showed broad phylogenetic affiliation (Proteobacteria, Firmicutes, and Actinobacteria), whereas lower pathway genes were mostly affiliated with the Deltaproteobacteria. Genes for both hydrogenotrophic and acetotrophic methanogenesis were also found. The wide variety of taxa involved in initial hydrocarbon degradation through upper pathways may reflect the variety of residual bitumen and diluent components present in the tailings pond.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Hidrocarburos/metabolismo , Metagenoma , Metano/biosíntesis , Yacimiento de Petróleo y Gas/microbiología , Estanques/microbiología , Alberta , Archaea/clasificación , Archaea/genética , Archaea/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Metagenómica , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
10.
Environ Sci Technol ; 47(18): 10708-17, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23889694

RESUMEN

Oil in subsurface reservoirs is biodegraded by resident microbial communities. Water-mediated, anaerobic conversion of hydrocarbons to methane and CO2, catalyzed by syntrophic bacteria and methanogenic archaea, is thought to be one of the dominant processes. We compared 160 microbial community compositions in ten hydrocarbon resource environments (HREs) and sequenced twelve metagenomes to characterize their metabolic potential. Although anaerobic communities were common, cores from oil sands and coal beds had unexpectedly high proportions of aerobic hydrocarbon-degrading bacteria. Likewise, most metagenomes had high proportions of genes for enzymes involved in aerobic hydrocarbon metabolism. Hence, although HREs may have been strictly anaerobic and typically methanogenic for much of their history, this may not hold today for coal beds and for the Alberta oil sands, one of the largest remaining oil reservoirs in the world. This finding may influence strategies to recover energy or chemicals from these HREs by in situ microbial processes.


Asunto(s)
Archaea/genética , Bacterias/genética , Yacimiento de Petróleo y Gas/microbiología , ARN de Archaea/genética , Aerobiosis , Alberta , Archaea/clasificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Genes Arqueales , Genes Bacterianos , Hidrocarburos/metabolismo , Metagenómica , ARN de Archaea/metabolismo , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
11.
Int J Mol Sci ; 14(5): 9080-98, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23698765

RESUMEN

Thapsia laciniata Rouy (Apiaceae) produces irregular and regular sesquiterpenoids with thapsane and guaiene carbon skeletons, as found in other Apiaceae species. A transcriptomic analysis utilizing Illumina next-generation sequencing enabled the identification of novel genes involved in the biosynthesis of terpenoids in Thapsia. From 66.78 million HQ paired-end reads obtained from T. laciniata roots, 64.58 million were assembled into 76,565 contigs (N50: 1261 bp). Seventeen contigs were annotated as terpene synthases and five of these were predicted to be sesquiterpene synthases. Of the 67 contigs annotated as cytochromes P450, 18 of these are part of the CYP71 clade that primarily performs hydroxylations of specialized metabolites. Three contigs annotated as aldehyde dehydrogenases grouped phylogenetically with the characterized ALDH1 from Artemisia annua and three contigs annotated as alcohol dehydrogenases grouped with the recently described ADH1 from A. annua. ALDH1 and ADH1 were characterized as part of the artemisinin biosynthesis. We have produced a comprehensive EST dataset for T. laciniata roots, which contains a large sample of the T. laciniata transcriptome. These transcriptome data provide the foundation for future research into the molecular basis for terpenoid biosynthesis in Thapsia and on the evolution of terpenoids in Apiaceae.


Asunto(s)
Biodiversidad , Perfilación de la Expresión Génica/métodos , Terpenos/metabolismo , Thapsia/genética , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Transferasas Alquil y Aril , Secuencia de Aminoácidos , Ciclo del Ácido Cítrico , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Electroforesis en Gel de Agar , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Geraniltranstransferasa/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ARN , Sesquiterpenos/metabolismo , Terpenos/química , Thapsia/enzimología
12.
Eur J Cell Biol ; 102(3): 151341, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37459799

RESUMEN

ING1 is a chromatin targeting subunit of the Sin3a histone deacetylase (HDAC) complex that alters chromatin structure to subsequently regulate gene expression. We find that ING1 knockdown increases expression of Twist1, Zeb 1&2, Snai1, Bmi1 and TSHZ1 drivers of EMT, promoting EMT and cell motility. ING1 expression had the opposite effect, promoting epithelial cell morphology and inhibiting basal and TGF-ß-induced motility in 3D organoid cultures. ING1 binds the Twist1 promoter and Twist1 was largely responsible for the ability of ING1 to reduce cell migration. Consistent with ING1 inhibiting Twist1 expression in vivo, an inverse relationship between ING1 and Twist1 levels was seen in breast cancer samples from The Cancer Genome Atlas (TCGA). The HDAC inhibitor vorinostat is approved for treatment of multiple myeloma and cutaneous T cell lymphoma and is in clinical trials for solid tumours as adjuvant therapy. One molecular target of vorinostat is INhibitor of Growth 2 (ING2), that together with ING1 serve as targeting subunits of the Sin3a HDAC complex. Treatment with sublethal (LD25-LD50) levels of vorinostat promoted breast cancer cell migration several-fold, which increased further upon ING1 knockout. These observations indicate that correct targeting of the Sin3a HDAC complex, and HDAC activity in general decreases luminal and basal breast cancer cell motility, suggesting that use of HDAC inhibitors as adjuvant therapies in breast cancers that are prone to metastasize may not be optimal and requires further investigation.


Asunto(s)
Neoplasias de la Mama , Inhibidores de Histona Desacetilasas , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Cromatina , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Inhibidores de Histona Desacetilasas/farmacología , Vorinostat/farmacología
13.
J Bacteriol ; 194(11): 3012-3, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22582372

RESUMEN

Corallococcus coralloides, like most other myxobacteria, undergoes a developmental program culminating in the formation of fruiting bodies. C. coralloides fruiting bodies are morphologically distinct from those of other fruiting myxobacteria for which full-length genome sequences are available. The genome sequence of the 10.0-Mb C. coralloides genome is presented herein.


Asunto(s)
Deltaproteobacteria/crecimiento & desarrollo , Deltaproteobacteria/genética , Genoma Bacteriano , Secuencia de Bases , Deltaproteobacteria/clasificación , Deltaproteobacteria/aislamiento & purificación , Datos de Secuencia Molecular
14.
Environ Microbiol ; 14(3): 754-64, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22040260

RESUMEN

Toluene is a model compound used to study the anaerobic biotransformation of aromatic hydrocarbons. Reports indicate that toluene is transformed via fumarate addition to form benzylsuccinate or by unknown mechanisms to form hydroxylated intermediates under methanogenic conditions. We investigated the mechanism(s) of syntrophic toluene metabolism by a newly described methanogenic enrichment from a gas condensate-contaminated aquifer. Pyrosequencing of 16S rDNA revealed that the culture was comprised mainly of Clostridiales. The predominant methanogens affiliated with the Methanomicrobiales. Methane production from toluene ranged from 72% to 79% of that stoichiometrically predicted. Isotope studies using (13)C(7) toluene showed that benzylsuccinate and benzoate transiently accumulated revealing that members of this consortium can catalyse fumarate addition and subsequent reactions. Detection of a BssA gene fragment in this culture further supported fumarate addition as a mechanism of toluene activation. Transient formation of cresols, benzylalcohol, hydroquinone and methylhydroquinone suggested alternative mechanism(s) for toluene metabolism. However, incubations of the consortium with (18)O-H(2)O showed that the hydroxyl group in these metabolites did not originate from water and abiotic control experiments revealed abiotic formation of hydroxylated species due to reactions of toluene with sulfide and oxygen. Our results suggest that toluene is activated by fumarate addition, presumably by the dominant Clostridiales.


Asunto(s)
Metano/metabolismo , Tolueno/metabolismo , Anaerobiosis , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/metabolismo , Cresoles/metabolismo , Fumaratos/metabolismo , Succinatos/metabolismo
15.
Antonie Van Leeuwenhoek ; 101(3): 493-506, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22038128

RESUMEN

Samples of produced water and oil obtained from the Enermark field (near Medicine Hat, Alberta, Canada) were separated into oil and aqueous phases first gravitationally and then through centrifugation at 20°C in an atmosphere of 90% N(2) and 10% CO(2). Biomass that remained associated with oil after gravitational separation (1×g) was dislodged by centrifugation at 25,000×g. DNA was isolated from the aqueous and oil-associated biomass fractions and subjected to polymerase chain reaction amplification with primers targeting bacterial and archaeal 16S rRNA genes. DNA pyrosequencing and bioinformatics tools were used to characterize the resulting 16S rRNA gene amplicons. The oil-associated microbial community was less diverse than that of the aqueous phase and had consistently higher representation of hydrogenotrophs (methanogens of the genera Methanolobus and Methanobacterium and acetogens of the genus Acetobacterium), indicating the oil phase to be a primary source of hydrogen. Many known hydrocarbon degraders were also found to be oil-attached, e.g. representatives of the gammaproteobacterial genus Thalassolituus, the actinobacterial genus Rhodococcus and the alphaproteobacterial genera Sphingomonas, Brevundimonas and Stappia. In contrast, all eight representatives of genera of the Deltaproteobacteria identified were found to be associated with the aqueous phase, likely because their preferred growth substrates are mostly water-soluble. Hence, oil attachment was seen for genera acting on substrates found primarily in the oil phase.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Consorcios Microbianos , Yacimiento de Petróleo y Gas/microbiología , Petróleo/microbiología , Microbiología del Suelo , Microbiología del Agua , Alberta , Archaea/metabolismo , Bacterias/metabolismo , Adhesión Bacteriana , Biomasa , Centrifugación , ADN Bacteriano/genética , Hidrógeno/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
16.
Appl Environ Microbiol ; 77(19): 6908-17, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21856836

RESUMEN

Pipelines transporting brackish subsurface water, used in the production of bitumen by steam-assisted gravity drainage, are subject to frequent corrosion failures despite the addition of the oxygen scavenger sodium bisulfite (SBS). Pyrosequencing of 16S rRNA genes was used to determine the microbial community composition for planktonic samples of transported water and for sessile samples of pipe-associated solids (PAS) scraped from pipeline cutouts representing corrosion failures. These were obtained from upstream (PAS-616P) and downstream (PAS-821TP and PAS-821LP, collected under rapid-flow and stagnant conditions, respectively) of the SBS injection point. Most transported water samples had a large fraction (1.8% to 97% of pyrosequencing reads) of Pseudomonas not found in sessile pipe samples. The sessile population of PAS-616P had methanogens (Methanobacteriaceae) as the main (56%) community component, whereas Deltaproteobacteria of the genera Desulfomicrobium and Desulfocapsa were not detected. In contrast, PAS-821TP and PAS-821LP had lower fractions (41% and 0.6%) of Methanobacteriaceae archaea but increased fractions of sulfate-reducing Desulfomicrobium (18% and 48%) and of bisulfite-disproportionating Desulfocapsa (35% and 22%) bacteria. Hence, SBS injection strongly changed the sessile microbial community populations. X-ray diffraction analysis of pipeline scale indicated that iron carbonate was present both upstream and downstream, whereas iron sulfide and sulfur were found only downstream of the SBS injection point, suggesting a contribution of the bisulfite-disproportionating and sulfate-reducing bacteria in the scale to iron corrosion. Incubation of iron coupons with pipeline waters indicated iron corrosion coupled to the formation of methane. Hence, both methanogenic and sulfidogenic microbial communities contributed to corrosion of pipelines transporting these brackish waters.


Asunto(s)
Archaea/clasificación , Archaea/efectos de los fármacos , Bacterias/clasificación , Bacterias/efectos de los fármacos , Biodiversidad , Sulfitos/metabolismo , Microbiología del Agua , Antioxidantes/metabolismo , Archaea/genética , Bacterias/genética , Análisis por Conglomerados , Corrosión , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , Datos de Secuencia Molecular , Filogenia , ARN de Archaea/genética , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
17.
Environ Sci Technol ; 45(2): 439-46, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21128661

RESUMEN

Oil sands tailings ponds receive and store the solid and liquid waste from bitumen extraction and are managed to promote solids densification and water recycling. The ponds are highly stratified due to increasing solids content as a function of depth but can be impacted by tailings addition and removal and by convection due to microbial gas production. We characterized the microbial communities in relation to microbial activities as a function of depth in an active tailings pond routinely treated with gypsum (CaSO(4)·2H(2)O) to accelerate densification. Pyrosequencing of 16S rDNA gene sequences indicated that the aerobic surface layer, where the highest level of sulfate (6 mM) but no sulfide was detected, had a very different community profile than the rest of the pond. Deeper anaerobic layers were dominated by syntrophs (Pelotomaculum, Syntrophus, and Smithella spp.), sulfate- and sulfur-reducing bacteria (SRB, Desulfocapsa and Desulfurivibrio spp.), acetate- and H(2)-using methanogens, and a variety of other anaerobes that have been implicated in hydrocarbon utilization or iron and sulfur cycling. The SRB were most abundant from 10 to 14 mbs, bracketing the zone where the sulfate reduction rate was highest. Similarly, the most abundant methanogens and syntrophs identified as a function of depth closely mirrored the fluctuating methanogenesis rates. Methanogenesis was inhibited in laboratory incubations by nearly 50% when sulfate was supplied at pond-level concentrations suggesting that in situ sulfate reduction can substantially minimize methane emissions. Based on our data, we hypothesize that the emission of sulfide due to SRB activity in the gypsum treated pond is also limited due to its high solubility and oxidation in surface waters.


Asunto(s)
Sulfato de Calcio/química , Carbono/metabolismo , Contaminantes Ambientales/metabolismo , Restauración y Remediación Ambiental/métodos , Petróleo/microbiología , Azufre/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Secuencia de Bases , Sulfato de Calcio/metabolismo , Ciclo del Carbono , Conservación de los Recursos Naturales , Contaminantes Ambientales/química , Industria Procesadora y de Extracción , Agua Dulce/química , Agua Dulce/microbiología , Hidrocarburos/química , Hidrocarburos/metabolismo , Residuos Industriales/análisis , Datos de Secuencia Molecular , Petróleo/metabolismo , Filogenia , Microbiología del Agua
18.
Appl Microbiol Biotechnol ; 91(3): 799-810, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21538114

RESUMEN

Injection of up-flow packed-bed bioreactors with excess volatile fatty acids and limiting concentrations of nitrate and sulfate gave complete reduction of nitrate from 0 to 5.5 cm and complete or near-complete reduction of sulfate from 3.2 to 11.5 cm along the bioreactor flow path. Most of the biomass (85%) and most of the genes for nitrate reduction (narG, 96%; napA, 99%) and for sulfate reduction (dsrB, 91%) were present near the inlet (0-5.5 cm) of the 37-cm-long bioreactor. Microbial community analysis by a combination of denaturing gradient gel electrophoresis and pyrosequencing of 16S rRNA amplicons indicated that nitrate-reducing Arcobacter and Pseudomonas species were located from 0 to 3.2 cm and throughout, respectively. Desulfobulbus species were the main sulfate reducers present and acetotrophic methanogens of the genus Methanosaeta predominated at 20-37 cm. Overall, the results indicated a succession of microbial communities along the bioreactor flow path. In the absence of nitrate, the sulfate reduction zone moved nearer to the bioreactor inlet. The sulfide concentration in the bioreactor effluent was temporarily lowered after nitrate injection was re-started. Hence, the bioreactor sulfide output could be disrupted by pulsed, not by constant nitrate injection, as demonstrated also previously in a low-temperature oil field.


Asunto(s)
Reactores Biológicos/microbiología , Consorcios Microbianos/genética , Nitratos/metabolismo , Sulfuros/metabolismo , Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , Biopelículas , Biomasa , Aceites , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Bacterias Reductoras del Azufre/genética
19.
Nucleic Acids Res ; 37(2): 550-6, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19059996

RESUMEN

To gain insight into the disease progression of transmissible spongiform encephalopathies (TSE), we searched for disease-specific patterns in circulating nucleic acids (CNA) in elk and cattle. In a 25-month time-course experiment, CNAs were isolated from blood samples of 24 elk (Cervus elaphus) orally challenged with chronic wasting disease (CWD) infectious material. In a separate experiment, blood-sample CNAs from 29 experimental cattle (Bos taurus) 40 months post-inoculation with clinical bovine spongiform encephalopathy (BSE) were analyzed according to the same protocol. Next-generation sequencing provided broad elucidation of sample CNAs: we detected infection-specific sequences as early as 11 months in elk (i.e. at least 3 months before the appearance of the first clinical signs) and we established CNA patterns related to BSE in cattle at least 4 months prior to clinical signs. In elk, a progression of CNA sequence patterns was found to precede and correlate with macro-observable disease progression, including delayed CWD progression in elk with PrP genotype LM. Some of the patterns identified contain transcription-factor-binding sites linked to endogenous retroviral integration. These patterns suggest that retroviruses may be connected to the manifestation of TSEs. Our results may become useful for the early diagnosis of TSE in live elk and cattle.


Asunto(s)
ADN/sangre , Ciervos , Encefalopatía Espongiforme Bovina/diagnóstico , Enfermedad Debilitante Crónica/diagnóstico , Animales , Bovinos , Progresión de la Enfermedad , Encefalopatía Espongiforme Bovina/sangre , Femenino , Análisis de Secuencia de ADN , Enfermedad Debilitante Crónica/sangre
20.
Stud Health Technol Inform ; 163: 359-65, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21335819

RESUMEN

Progression of multiple sclerosis (MS) results in brain lesions caused by white matter inflammation. MS lesions have various shapes, sizes and locations, affecting cognitive abilities of patients to different extents. To facilitate the visualization of the brain lesion distribution, we have developed a software tool to build 3D surface models of MS lesions. This tool allows users to create 3D models of lesions quickly and to visualize the lesions and brain tissues using various visual attributes and configurations. The software package is based on breadth-first search based 3D connected component analysis and a 3D flood-fill based region growing algorithm to generate 3D models from binary or non-binary segmented medical image stacks.


Asunto(s)
Encéfalo/patología , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/patología , Fibras Nerviosas Mielínicas/patología , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , Inteligencia Artificial , Humanos , Aumento de la Imagen/métodos , Vías Nerviosas/patología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Técnica de Sustracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA