Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry ; 62(3): 835-850, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36706455

RESUMEN

The heme enzyme chlorite dismutase (Cld) catalyzes the degradation of chlorite to chloride and dioxygen. Many questions about the molecular reaction mechanism of this iron protein have remained unanswered, including the electronic nature of the catalytically relevant oxoiron(IV) intermediate and its interaction with the distal, flexible, and catalytically active arginine. Here, we have investigated the dimeric Cld from Cyanothece sp. PCC7425 (CCld) and two variants having the catalytic arginine R127 (i) hydrogen-bonded to glutamine Q74 (wild-type CCld), (ii) arrested in a salt bridge with a glutamate (Q74E), or (iii) being fully flexible (Q74V). Presented stopped-flow spectroscopic studies demonstrate the initial and transient appearance of Compound I in the reaction between CCld and chlorite at pH 5.0 and 7.0 and the dominance of spectral features of an oxoiron(IV) species (418, 528, and 551 nm) during most of the chlorite degradation period at neutral and alkaline pH. Arresting the R127 in a salt bridge delays chlorite decomposition, whereas increased flexibility accelerates the reaction. The dynamics of R127 does not affect the formation of Compound I mediated by hypochlorite but has an influence on Compound I stability, which decreases rapidly with increasing pH. The decrease in activity is accompanied by the formation of protein-based amino acid radicals. Compound I is demonstrated to oxidize iodide, chlorite, and serotonin but not hypochlorite. Serotonin is able to dampen oxidative damage and inactivation of CCld at neutral and alkaline pH. Presented data are discussed with respect to the molecular mechanism of Cld and the pronounced pH dependence of chlorite degradation.


Asunto(s)
Arginina , Serotonina , Concentración de Iones de Hidrógeno , Cinética
2.
Biochemistry ; 60(8): 621-634, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33586945

RESUMEN

Chlorite dismutases (Clds) are heme b-containing oxidoreductases that can decompose chlorite to chloride and molecular oxygen. They are divided in two clades that differ in oligomerization, subunit architecture, and the hydrogen-bonding network of the distal catalytic arginine, which is proposed to switch between two conformations during turnover. To understand the impact of the conformational dynamics of this basic amino acid on heme coordination, structure, and catalysis, Cld from Cyanothece sp. PCC7425 was used as a model enzyme. As typical for a clade 2 Cld, its distal arginine 127 is hydrogen-bonded to glutamine 74. The latter has been exchanged with either glutamate (Q74E) to arrest R127 in a salt bridge or valine (Q74V) that mirrors the setting in clade 1 Clds. We present the X-ray crystal structures of Q74V and Q74E and demonstrate the pH-induced changes in the environment and coordination of the heme iron by ultraviolet-visible, circular dichroism, and electron paramagnetic resonance spectroscopies as well as differential scanning calorimetry. The conformational dynamics of R127 is shown to have a significant role in heme coordination during the alkaline transition and in the thermal stability of the heme cavity, whereas its impact on the catalytic efficiency of chlorite degradation is relatively small. The findings are discussed with respect to (i) the flexible loop connecting the N-terminal and C-terminal ferredoxin-like domains, which differs in clade 1 and clade 2 Clds and carries Q74 in clade 2 proteins, and (ii) the proposed role(s) of the arginine in catalysis.


Asunto(s)
Arginina/metabolismo , Cloruros/metabolismo , Cyanothece/enzimología , Hemo/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Temperatura , Arginina/química , Catálisis , Estabilidad de Enzimas , Hemo/química , Enlace de Hidrógeno , Cinética , Modelos Moleculares
3.
Protein Sci ; 31(3): 591-601, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34897841

RESUMEN

Pseudomonas putida W619 is a soil Gram-negative bacterium commonly used in environmental studies thanks to its ability in degrading many aromatic compounds. Its genome contains several putative carbohydrate-active enzymes such as glycoside hydrolases and lytic polysaccharide monooxygenases (PMOs). In this study, we have heterologously produced in Escherichia coli and characterized a new enzyme belonging to the AA10 family, named PpAA10 (Uniprot: B1J2U9), which contains a chitin-binding type-4 module and showed activity toward ß-chitin. The active form of the enzyme was produced in E. coli exploiting the addition of a cleavable N-terminal His tag which ensured the presence of the copper-coordinating His as the first residue. Electron paramagnetic resonance spectroscopy showed signal signatures similar to those observed for the copper-binding site of chitin-cleaving PMOs. The protein was used to develop a versatile, highly sensitive, cost-effective and easy-to-apply method to detect PMO's activity exploiting attenuated total reflection-Fourier transform infrared spectroscopy and able to easily discriminate between different substrates.


Asunto(s)
Oxigenasas de Función Mixta , Pseudomonas putida , Escherichia coli/genética , Escherichia coli/metabolismo , Oxigenasas de Función Mixta/química , Polisacáridos/química , Espectroscopía Infrarroja por Transformada de Fourier , Especificidad por Sustrato
4.
Nat Commun ; 13(1): 4586, 2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933508

RESUMEN

Amyloid aggregation of α-synuclein (αS) is the hallmark of Parkinson's disease and other synucleinopathies. Recently, Tau protein, generally associated with Alzheimer's disease, has been linked to αS pathology and observed to co-localize in αS-rich disease inclusions, although the molecular mechanisms for the co-aggregation of both proteins remain elusive. We report here that αS phase-separates into liquid condensates by electrostatic complex coacervation with positively charged polypeptides such as Tau. Condensates undergo either fast gelation or coalescence followed by slow amyloid aggregation depending on the affinity of αS for the poly-cation and the rate of valence exhaustion of the condensate network. By combining a set of advanced biophysical techniques, we have been able to characterize αS/Tau liquid-liquid phase separation and identified key factors that lead to the formation of hetero-aggregates containing both proteins in the interior of the liquid protein condensates.


Asunto(s)
Sinucleinopatías , alfa-Sinucleína , Amiloide/metabolismo , Humanos , Electricidad Estática , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
5.
J Inorg Biochem ; 227: 111689, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34922158

RESUMEN

Chlorite dismutases (Clds) are heme b containing oxidoreductases able to decompose chlorite to chloride and molecular oxygen. This work analyses the impact of the distal, flexible and catalytic arginine on the binding of anionic angulate ligands like nitrite and the substrate chlorite. Dimeric Cld from Cyanothece sp. PCC7425 was used as a model enzyme. We have investigated wild-type CCld having the distal catalytic R127 hydrogen-bonded to glutamine Q74 and variants with R127 (i) being arrested in a salt-bridge with a glutamate (Q74E), (ii) being fully flexible (Q74V) or (iii) substituted by either alanine (R127A) or lysine (R127K). We present the electronic and spectral signatures of the high-spin ferric proteins and the corresponding low-spin nitrite complexes elucidated by UV-visible, circular dichroism and electron paramagnetic resonance spectroscopies. Furthermore, we demonstrate the impact of the dynamics of R127 on the thermal stability of the respective nitrite adducts and present the X-ray crystal structures of the nitrite complexes of wild-type CCld and the variants Q74V, Q74E and R127A. In addition, the molecular dynamics (MD) and the binding modi of nitrite and chlorite to the ferric wild-type enzyme and the mutant proteins and the interaction of the oxoanions with R127 have been analysed by MD simulations. The findings are discussed with respect to the role(s) of R127 in ligand and chlorite binding and substrate degradation.


Asunto(s)
Arginina/química , Proteínas Bacterianas/química , Cloruros/química , Cyanothece/enzimología , Nitritos/química , Oxidorreductasas/química , Multimerización de Proteína , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA