Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(39): e2209267119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122240

RESUMEN

Inositol 1,4,5-trisphosphate receptors (IP3Rs) initiate a diverse array of physiological responses by carefully orchestrating intracellular calcium (Ca2+) signals in response to various external cues. Notably, IP3R channel activity is determined by several obligatory factors, including IP3, Ca2+, and ATP. The critical basic amino acid residues in the N-terminal IP3-binding core (IBC) region that facilitate IP3 binding are well characterized. In contrast, the residues conferring regulation by Ca2+ have yet to be ascertained. Using comparative structural analysis of Ca2+-binding sites identified in two main families of intracellular Ca2+-release channels, ryanodine receptors (RyRs) and IP3Rs, we identified putative acidic residues coordinating Ca2+ in the cytosolic calcium sensor region in IP3Rs. We determined the consequences of substituting putative Ca2+ binding, acidic residues in IP3R family members. We show that the agonist-induced Ca2+ release, single-channel open probability (P0), and Ca2+ sensitivities are markedly altered when the negative charge on the conserved acidic side chain residues is neutralized. Remarkably, neutralizing the negatively charged side chain on two of the residues individually in the putative Ca2+-binding pocket shifted the Ca2+ required to activate IP3R to higher concentrations, indicating that these residues likely are a component of the Ca2+ activation site in IP3R. Taken together, our findings indicate that Ca2+ binding to a well-conserved activation site is a common underlying mechanism resulting in increased channel activity shared by IP3Rs and RyRs.


Asunto(s)
Calcio , Receptores de Inositol 1,4,5-Trifosfato , Canal Liberador de Calcio Receptor de Rianodina , Adenosina Trifosfato , Aminoácidos Básicos , Sitios de Unión , Calcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
2.
Nature ; 527(7578): 336-41, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26458101

RESUMEN

Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are ubiquitous ion channels responsible for cytosolic Ca(2+) signalling and essential for a broad array of cellular processes ranging from contraction to secretion, and from proliferation to cell death. Despite decades of research on InsP3Rs, a mechanistic understanding of their structure-function relationship is lacking. Here we present the first, to our knowledge, near-atomic (4.7 Å) resolution electron cryomicroscopy structure of the tetrameric mammalian type 1 InsP3R channel in its apo-state. At this resolution, we are able to trace unambiguously ∼85% of the protein backbone, allowing us to identify the structural elements involved in gating and modulation of this 1.3-megadalton channel. Although the central Ca(2+)-conduction pathway is similar to other ion channels, including the closely related ryanodine receptor, the cytosolic carboxy termini are uniquely arranged in a left-handed α-helical bundle, directly interacting with the amino-terminal domains of adjacent subunits. This configuration suggests a molecular mechanism for allosteric regulation of channel gating by intracellular signals.


Asunto(s)
Microscopía por Crioelectrón , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/ultraestructura , Regulación Alostérica , Animales , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Calcio/metabolismo , Señalización del Calcio , Citosol/química , Citosol/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Activación del Canal Iónico , Modelos Moleculares , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
3.
Adv Exp Med Biol ; 981: 121-147, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29594860

RESUMEN

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitously expressed intracellular ligand-gated Ca2+ channels present on the endoplasmic reticulum of virtually all eukaryotic cells. These channels mediate the Ca2+ release from intracellular stores in response to activation by the signaling molecule IP3, which functions to transmit diverse signals received by the cell, e.g. from hormones, neurotransmitters, growth factors and hypertrophic stimuli, to various signaling pathways within the cell. Thus, IP3R channels can be conceptualized as highly dynamic scaffold membrane protein complexes, where binding of ligands can change the scaffold structure leading to cellular Ca2+ signals that direct markedly different cellular actions. Although extensively characterized in physiological and biochemical studies, the detailed mechanisms of how IP3Rs produce highly controlled Ca2+ signals in response to diversified extra- and intracellular stimuli remains unknown and requires high-resolution knowledge of channel molecular architecture. Recently, single-particle electron cryomicroscopy (cryo-EM) has yielded a long-awaited near-atomic resolution structure of the entire full-length type 1 IP3R. This structure provides important insights into the molecular underpinnings of ligand-mediated activation and regulation of IP3R. In this chapter, we evaluate available information and research progress on the structure of IP3R channel in an attempt to shed light on its function.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/química , Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Animales , Microscopía por Crioelectrón , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad
4.
J Neuroinflammation ; 13(1): 278, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27776522

RESUMEN

BACKGROUND: Recently, we described a novel autoantibody, anti-Sj/ITPR1-IgG, that targets the inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) in patients with cerebellar ataxia. However, ITPR1 is expressed not only by Purkinje cells but also in the anterior horn of the spinal cord, in the substantia gelatinosa and in the motor, sensory (including the dorsal root ganglia) and autonomic peripheral nervous system, suggesting that the clinical spectrum associated with autoimmunity to ITPR1 may be broader than initially thought. Here we report on serum autoantibodies to ITPR1 (up to 1:15,000) in three patients with (radiculo)polyneuropathy, which in two cases was associated with cancer (ITPR1-expressing adenocarcinoma of the lung, multiple myeloma), suggesting a paraneoplastic aetiology. METHODS: Serological and other immunological studies, and retrospective analysis of patient records. RESULTS: The clinical findings comprised motor, sensory (including severe pain) and autonomic symptoms. While one patient presented with subacute symptoms mimicking Guillain-Barré syndrome (GBS), the symptoms progressed slowly in two other patients. Electrophysiology revealed delayed F waves; a decrease in motor and sensory action potentials and conduction velocities; delayed motor latencies; signs of denervation, indicating sensorimotor radiculopolyneuropathy of the mixed type; and no conduction blocks. ITPR1-IgG belonged to the complement-activating IgG1 subclass in the severely affected patient but exclusively to the IgG2 subclass in the two more mildly affected patients. Cerebrospinal fluid ITPR1-IgG was found to be of predominantly extrathecal origin. A 3H-thymidine-based proliferation assay confirmed the presence of ITPR1-reactive lymphocytes among peripheral blood mononuclear cells (PBMCs). Immunophenotypic profiling of PBMCs protein demonstrated predominant proliferation of B cells, CD4 T cells and CD8 memory T cells following stimulation with purified ITPR1 protein. Patient ITPR1-IgG bound both to peripheral nervous tissue and to lung tumour tissue. A nerve biopsy showed lymphocyte infiltration (including cytotoxic CD8 cells), oedema, marked axonal loss and myelin-positive macrophages, indicating florid inflammation. ITPR1-IgG serum titres declined following tumour removal, paralleled by clinical stabilization. CONCLUSIONS: Our findings expand the spectrum of clinical syndromes associated with ITPR1-IgG and suggest that autoimmunity to ITPR1 may underlie peripheral nervous system diseases (including GBS) in some patients and may be of paraneoplastic origin in a subset of cases.


Asunto(s)
Autoanticuerpos/líquido cefalorraquídeo , Receptores de Inositol 1,4,5-Trifosfato/inmunología , Enfermedades del Sistema Nervioso Periférico/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso Periférico/inmunología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adulto , Anciano , Animales , Autoanticuerpos/clasificación , Proliferación Celular/fisiología , Citocinas/metabolismo , Femenino , Humanos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Macaca mulatta , Masculino , Persona de Mediana Edad , Ratas , Estudios Retrospectivos , Médula Espinal/metabolismo , Médula Espinal/patología
5.
J Neuroinflammation ; 11: 206, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25498830

RESUMEN

We report on a serum autoantibody associated with cerebellar ataxia. Immunohistochemical studies of sera from four patients referred for autoantibody testing revealed binding of high-titer (up to 1:5,000) IgG antibodies, mainly IgG1, to the molecular layer, Purkinje cell layer, and white matter on mouse, rat, porcine, and monkey cerebellum sections. The antibody bound to PC somata, dendrites, and axons, resulting in a binding pattern similar to that reported for anti-Ca/anti-ARHGAP26, but did not react with recombinant ARHGAP26. Extensive control studies were performed to rule out a broad panel of previously described paraneoplastic and non-paraneoplastic anti-neural autoantibodies. The characteristic binding pattern as well as double staining experiments suggested inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) as the target antigen. Verification of the antigen included specific neutralization of the tissue reaction following preadsorption with ITPR1 (but not ARHGAP26) and a dot-blot assay with purified ITPR1 protein. By contrast, anti-ARHGAP26-positive sera did not bind to ITPR1. In a parallel approach, a combination of histoimmunoprecipitation and mass spectrometry also identified ITPR1 as the target antigen. Finally, a recombinant cell-based immunofluorescence assay using HEK293 cells expressing ITPR1 and ARHGAP26, respectively, confirmed the identification of ITPR1. Mutations of ITPR1 have previously been implicated in spinocerebellar ataxia with and without cognitive decline. Our findings suggest a role of autoimmunity against ITPR1 in the pathogenesis of autoimmune cerebellitis and extend the panel of diagnostic markers for this disease.


Asunto(s)
Autoanticuerpos/metabolismo , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Adulto , Animales , Autoanticuerpos/análisis , Autoanticuerpos/inmunología , Ataxia Cerebelosa/inmunología , Femenino , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/análisis , Receptores de Inositol 1,4,5-Trifosfato/inmunología , Macaca mulatta , Ratones , Ratas , Porcinos
6.
bioRxiv ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39211071

RESUMEN

A wide variety of factors influence inositol 1,4,5-trisphosphate (IP 3 ) receptor (IP 3 R) activity resulting in modulation of intracellular Ca 2+ release. This regulation is thought to define the spatio-temporal patterns of Ca 2+ signals necessary for the appropriate activation of downstream effectors. The binding of both IP 3 and Ca 2+ are obligatory for IP 3 R channel opening, however, Ca 2+ regulates IP 3 R activity in a biphasic manner. Mutational studies have revealed that Ca 2+ binding to a high-affinity pocket formed by the ARM3 domain and linker domain promotes IP 3 R channel opening without altering the Ca 2+ dependency for channel inactivation. These data suggest a distinct low-affinity Ca 2+ binding site is responsible for the reduction in IP 3 R activity at higher [Ca 2+ ]. We determined the consequences of mutating a cluster of acidic residues in the ARM2 and central linker domain reported to coordinate Ca 2+ in cryo-EM structures of the IP 3 R type 3. This site is termed the "CD Ca 2+ binding site" and is well-conserved in all IP 3 R sub-types. We show that the CD site Ca 2+ binding mutants where the negatively charged glutamic acid residues are mutated to alanine exhibited enhanced sensitivity to IP 3 -generating agonists. Ca 2+ binding mutants displayed spontaneous elemental Ca 2+ events (Ca 2+ puffs) and the number of IP 3 -induced Ca 2+ puffs was significantly augmented in cells stably expressing Ca 2+ binding site mutants. When measured with "on-nucleus" patch clamp, the inhibitory effect of high [Ca 2+ ] on single channel-open probability (P o ) was reduced in mutant channels and this effect was dependent on [ATP]. These results indicate that Ca 2+ binding to the putative CD Ca 2+ inhibitory site facilitates the reduction in IP 3 R channel activation when cytosolic [ATP] is reduced and suggest that at higher [ATP], additional Ca 2+ binding motifs may contribute to the biphasic regulation of IP 3 -induced Ca 2+ release.

7.
Nat Commun ; 15(1): 1965, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438382

RESUMEN

The mitochondrial electron transport chain (ETC) is a highly adaptive process to meet metabolic demands of the cell, and its dysregulation has been associated with diverse clinical pathologies. However, the role and nature of impaired ETC in kidney diseases remains poorly understood. Here, we generate diabetic mice with podocyte-specific overexpression of Ndufs4, an accessory subunit of mitochondrial complex I, as a model investigate the role of ETC integrity in diabetic kidney disease (DKD). We find that conditional male mice with genetic overexpression of Ndufs4 exhibit significant improvements in cristae morphology, mitochondrial dynamics, and albuminuria. By coupling proximity labeling with super-resolution imaging, we also identify the role of cristae shaping protein STOML2 in linking NDUFS4 with improved cristae morphology. Together, we provide the evidence on the central role of NDUFS4 as a regulator of cristae remodeling and mitochondrial function in kidney podocytes. We propose that targeting NDUFS4 represents a promising approach to slow the progression of DKD.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Masculino , Animales , Ratones , Nefropatías Diabéticas/genética , Diabetes Mellitus Experimental/genética , Membranas Mitocondriales , Riñón , Mitocondrias , Complejo I de Transporte de Electrón/genética
8.
Cell Calcium ; 114: 102770, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37393815

RESUMEN

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ubiquitously expressed large-conductance Ca2+-permeable channels predominantly localized to the endoplasmic reticulum (ER) membranes of virtually all eukaryotic cell types. IP3Rs work as Ca2+ signaling hubs through which diverse extracellular stimuli and intracellular inputs are processed and then integrated to result in delivery of Ca2+ from the ER lumen to generate cytosolic Ca2+ signals with precise temporal and spatial properties. IP3R-mediated Ca2+ signals control a vast repertoire of cellular functions ranging from gene transcription and secretion to the more enigmatic brain activities such as learning and memory. IP3Rs open and release Ca2+ when they bind both IP3 and Ca2+, the primary channel agonists. Despite overwhelming evidence supporting functional interplay between IP3 and Ca2+ in activation and inhibition of IP3Rs, the mechanistic understanding of how IP3R channels convey their gating through the interplay of two primary agonists remains one of the major puzzles in the field. The last decade has seen much progress in the use of cryogenic electron microscopy to elucidate the molecular mechanisms of ligand binding, ion permeation, ion selectivity and gating of the IP3R channels. The results of these studies, summarized in this review, provide a prospective view of what the future holds in structural and functional research of IP3Rs.


Asunto(s)
Calcio , Inositol 1,4,5-Trifosfato , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ligandos , Estudios Prospectivos , Calcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Señalización del Calcio/fisiología
9.
Res Sq ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37461606

RESUMEN

The mitochondrial electron transport chain (ETC) is a highly adaptive process to meet metabolic demands of the cell, and its dysregulation has been associated with diverse clinical pathologies. However, the role and nature of impaired ETC in kidney diseases remains poorly understood. Here, we generated diabetic mice with podocyte-specific overexpression of Ndufs4, an accessory subunit of mitochondrial complex I, as a model to investigate the role of ETC integrity in diabetic kidney disease (DKD). We find that these conditional mice exhibit significant improvements in cristae morphology, mitochondrial dynamics, and albuminuria. By coupling proximity labeling with super-resolution imaging, we also identify the role of cristae shaping proteins in linking NDUFS4 with improved cristae morphology. Taken together, we discover the central role of NDUFS4 as a powerful regulator of cristae remodeling, respiratory supercomplexes assembly, and mitochondrial ultrastructure in vitro and in vivo. We propose that targeting NDUFS4 represents a promising approach to slow the progression of DKD.

10.
Nat Commun ; 14(1): 2783, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188665

RESUMEN

Cardiolipin is a hallmark phospholipid of mitochondrial membranes. Despite established significance of cardiolipin in supporting respiratory supercomplex organization, a mechanistic understanding of this lipid-protein interaction is still lacking. To address the essential role of cardiolipin in supercomplex organization, we report cryo-EM structures of a wild type supercomplex (IV1III2IV1) and a supercomplex (III2IV1) isolated from a cardiolipin-lacking Saccharomyces cerevisiae mutant at 3.2-Å and 3.3-Å resolution, respectively, and demonstrate that phosphatidylglycerol in III2IV1 occupies similar positions as cardiolipin in IV1III2IV1. Lipid-protein interactions within these complexes differ, which conceivably underlies the reduced level of IV1III2IV1 and high levels of III2IV1 and free III2 and IV in mutant mitochondria. Here we show that anionic phospholipids interact with positive amino acids and appear to nucleate a phospholipid domain at the interface between the individual complexes, which dampen charge repulsion and further stabilize interaction, respectively, between individual complexes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cardiolipinas/metabolismo , Fosfatidilgliceroles/metabolismo , Fosfolípidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Cell Mol Immunol ; 20(1): 11-25, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36302985

RESUMEN

Calcium signaling is essential for lymphocyte activation, with genetic disruptions of store-operated calcium (Ca2+) entry resulting in severe immunodeficiency. The inositol 1,4,5-trisphosphate receptor (IP3R), a homo- or heterotetramer of the IP3R1-3 isoforms, amplifies lymphocyte signaling by releasing Ca2+ from endoplasmic reticulum stores following antigen stimulation. Although knockout of all IP3R isoforms in mice causes immunodeficiency, the seeming redundancy of the isoforms is thought to explain the absence of variants in human immunodeficiency. In this study, we identified compound heterozygous variants of ITPR3 (a gene encoding IP3R subtype 3) in two unrelated Caucasian patients presenting with immunodeficiency. To determine whether ITPR3 variants act in a nonredundant manner and disrupt human immune responses, we characterized the Ca2+ signaling capacity, the lymphocyte response, and the clinical phenotype of these patients. We observed disrupted Ca2+ signaling in patient-derived fibroblasts and immune cells, with abnormal proliferation and activation responses following T-cell receptor stimulation. Reconstitution of IP3R3 in IP3R knockout cell lines led to the identification of variants as functional hypomorphs that showed reduced ability to discriminate between homeostatic and induced states, validating a genotype-phenotype link. These results demonstrate a functional link between defective endoplasmic reticulum Ca2+ channels and immunodeficiency and identify IP3Rs as diagnostic targets for patients with specific inborn errors of immunity. These results also extend the known cause of Ca2+-associated immunodeficiency from store-operated entry to impaired Ca2+ mobilization from the endoplasmic reticulum, revealing a broad sensitivity of lymphocytes to genetic defects in Ca2+ signaling.


Asunto(s)
Señalización del Calcio , Calcio , Receptores de Inositol 1,4,5-Trifosfato , Animales , Humanos , Ratones , Calcio/metabolismo , Señalización del Calcio/genética , Señalización del Calcio/inmunología , Homeostasis , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/inmunología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Isoformas de Proteínas/metabolismo , Enfermedades del Sistema Inmune/metabolismo
12.
Structure ; 30(1): 107-113.e3, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34506732

RESUMEN

The tripartite AcrAB-TolC assembly, which spans both the inner and outer membranes in Gram-negative bacteria, is an efflux pump that contributes to multidrug resistance. Here, we present the in situ structure of full-length Escherichia coli AcrAB-TolC determined at 7 Å resolution by electron cryo-tomography. The TolC channel penetrates the outer membrane bilayer through to the outer leaflet and exhibits two different configurations that differ by a 60° rotation relative to the AcrB position in the pump assembly. AcrA protomers interact directly with the inner membrane and with AcrB via an interface located in proximity to the AcrB ligand-binding pocket. Our structural analysis suggests that these AcrA-bridged interactions underlie an allosteric mechanism for transmitting drug-evoked signals from AcrB to the TolC channel within the pump. Our study demonstrates the power of in situ electron cryo-tomography, which permits critical insights into the function of bacterial efflux pumps.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Lipoproteínas/química , Proteínas de Transporte de Membrana/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Regulación Alostérica , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/química , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligandos , Lipoproteínas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Conformación Proteica
13.
Nat Commun ; 13(1): 6942, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376291

RESUMEN

Inositol-1,4,5-trisphosphate receptors (IP3Rs) are activated by IP3 and Ca2+ and their gating is regulated by various intracellular messengers that finely tune the channel activity. Here, using single particle cryo-EM analysis we determined 3D structures of the nanodisc-reconstituted IP3R1 channel in two ligand-bound states. These structures provide unprecedented details governing binding of IP3, Ca2+ and ATP, revealing conformational changes that couple ligand-binding to channel opening. Using a deep-learning approach and 3D variability analysis we extracted molecular motions of the key protein domains from cryo-EM density data. We find that IP3 binding relies upon intrinsic flexibility of the ARM2 domain in the tetrameric channel. Our results highlight a key role of dynamic side chains in regulating gating behavior of IP3R channels. This work represents a stepping-stone to developing mechanistic understanding of conformational pathways underlying ligand-binding, activation and regulation of the channel.


Asunto(s)
Calcio , Inositol 1,4,5-Trifosfato , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Calcio/metabolismo , Ligandos , Dominios Proteicos , Inositol 1,4,5-Trifosfato/metabolismo , Señalización del Calcio
14.
Proc Natl Acad Sci U S A ; 105(28): 9610-5, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18621707

RESUMEN

The skeletal muscle Ca(2+) release channel (RyR1), a homotetramer, regulates the release of Ca(2+) from the sarcoplasmic reticulum to initiate muscle contraction. In this work, we have delineated the RyR1 monomer boundaries in a subnanometer-resolution electron cryomicroscopy (cryo-EM) density map. In the cytoplasmic region of each RyR1 monomer, 36 alpha-helices and 7 beta-sheets can be resolved. A beta-sheet was also identified close to the membrane-spanning region that resembles the cytoplasmic pore structures of inward rectifier K(+) channels. Three structural folds, generated for amino acids 12-565 using comparative modeling and cryo-EM density fitting, localize close to regions implicated in communication with the voltage sensor in the transverse tubules. Eleven of the 15 disease-related residues for these domains are mapped to the surface of these models. Four disease-related residues are found in a basin at the interfaces of these regions, creating a pocket in which the immunophilin FKBP12 can fit. Taken together, these results provide a structural context for both channel gating and the consequences of certain malignant hyperthermia and central core disease-associated mutations in RyR1.


Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , Canal Liberador de Calcio Receptor de Rianodina/química , Citoplasma , Músculo Esquelético/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
15.
Proc Natl Acad Sci U S A ; 105(21): 7451-5, 2008 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-18490661

RESUMEN

The transient receptor potential (TRP) family of ion channels participate in many signaling pathways. TRPV1 functions as a molecular integrator of noxious stimuli, including heat, low pH, and chemical ligands. Here, we report the 3D structure of full-length rat TRPV1 channel expressed in the yeast Saccharomyces cerevisiae and purified by immunoaffinity chromatography. We demonstrate that the recombinant purified TRPV1 channel retains its structural and functional integrity and is suitable for structural analysis. The 19-A structure of TRPV1 determined by using single-particle electron cryomicroscopy exhibits fourfold symmetry and comprises two distinct regions: a large open basket-like domain, likely corresponding to the cytoplasmic N- and C-terminal portions, and a more compact domain, corresponding to the transmembrane portion. The assignment of transmembrane and cytoplasmic regions was supported by fitting crystal structures of the structurally homologous Kv1.2 channel and isolated TRPV1 ankyrin repeats into the TRPV1 structure.


Asunto(s)
Canales Catiónicos TRPV/química , Animales , Repetición de Anquirina , Membrana Celular/química , Microscopía por Crioelectrón/métodos , Cristalografía , Citoplasma/química , Imagenología Tridimensional , Canal de Potasio Kv.1.2/química , Conformación Proteica , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Saccharomyces cerevisiae/genética , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/aislamiento & purificación
16.
Commun Biol ; 4(1): 625, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035440

RESUMEN

Type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) is the predominant Ca2+-release channel in neurons. IP3R1 mediates Ca2+ release from the endoplasmic reticulum into the cytosol and thereby is involved in many physiological processes. Here, we present the cryo-EM structures of full-length rat IP3R1 reconstituted in lipid nanodisc and detergent solubilized in the presence of phosphatidylcholine determined in ligand-free, closed states by single-particle electron cryo-microscopy. Notably, both structures exhibit the well-established IP3R1 protein fold and reveal a nearly complete representation of lipids with similar locations of ordered lipids bound to the transmembrane domains. The lipid-bound structures show improved features that enabled us to unambiguously build atomic models of IP3R1 including two membrane associated helices that were not previously resolved in the TM region. Our findings suggest conserved locations of protein-bound lipids among homotetrameric ion channels that are critical for their structural and functional integrity despite the diversity of structural mechanisms for their gating.


Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato/ultraestructura , Membrana Dobles de Lípidos/química , Animales , Canales de Calcio/metabolismo , Canales de Calcio/ultraestructura , Microscopía por Crioelectrón/métodos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Membrana Dobles de Lípidos/metabolismo , Fosfatidilcolinas/química , Conformación Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Ratas
17.
Artículo en Inglés | MEDLINE | ID: mdl-31501195

RESUMEN

The pro- and antiapoptotic proteins belonging to the B-cell lymphoma-2 (Bcl-2) family exert a critical control over cell-death processes by enabling or counteracting mitochondrial outer membrane permeabilization. Beyond this mitochondrial function, several Bcl-2 family members have emerged as critical modulators of intracellular Ca2+ homeostasis and dynamics, showing proapoptotic and antiapoptotic functions. Bcl-2 family proteins specifically target several intracellular Ca2+-transport systems, including organellar Ca2+ channels: inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), Ca2+-release channels mediating Ca2+ flux from the endoplasmic reticulum, as well as voltage-dependent anion channels (VDACs), which mediate Ca2+ flux across the mitochondrial outer membrane into the mitochondria. Although the formation of protein complexes between Bcl-2 proteins and these channels has been extensively studied, a major advance during recent years has been elucidating the complex interaction of Bcl-2 proteins with IP3Rs. Distinct interaction sites for different Bcl-2 family members were identified in the primary structure of IP3Rs. The unique molecular profiles of these Bcl-2 proteins may account for their distinct functional outcomes when bound to IP3Rs. Furthermore, Bcl-2 inhibitors used in cancer therapy may affect IP3R function as part of their proapoptotic effect and/or as an adverse effect in healthy cells.


Asunto(s)
Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Apoptosis , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Homeostasis , Humanos , Ratones , Mitocondrias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Dominios Proteicos , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Proteína bcl-X/metabolismo
18.
Nat Struct Mol Biol ; 26(1): 40-49, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30598551

RESUMEN

Cation channels of the transient receptor potential (TRP) family serve important physiological roles by opening in response to diverse intra- and extracellular stimuli that regulate their lower or upper gates. Despite extensive studies, the mechanism coupling these gates has remained obscure. Previous structures have failed to resolve extracellular loops, known in the TRPV subfamily as 'pore turrets', which are proximal to the upper gates. We established the importance of the pore turret through activity assays and by solving structures of rat TRPV2, both with and without an intact turret at resolutions of 4.0 Å and 3.6 Å, respectively. These structures resolve the full-length pore turret and reveal fully open and partially open states of TRPV2, both with unoccupied vanilloid pockets. Our results suggest a mechanism by which physiological signals, such as lipid binding, can regulate the lower gate and couple to the upper gate through a pore-turret-facilitated mechanism.


Asunto(s)
Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Animales , Humanos , Estructura Secundaria de Proteína , Ratas , Transducción de Señal/genética , Transducción de Señal/fisiología , Canales Catiónicos TRPV/genética , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
20.
Cell Res ; 28(12): 1158-1170, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30470765

RESUMEN

Inositol-1,4,5-trisphosphate receptors (InsP3Rs) are cation channels that mobilize Ca2+ from intracellular stores in response to a wide range of cellular stimuli. The paradigm of InsP3R activation is the coupled interplay between binding of InsP3 and Ca2+ that switches the ion conduction pathway between closed and open states to enable the passage of Ca2+ through the channel. However, the molecular mechanism of how the receptor senses and decodes ligand-binding signals into gating motion remains unknown. Here, we present the electron cryo-microscopy structure of InsP3R1 from rat cerebellum determined to 4.1 Å resolution in the presence of activating concentrations of Ca2+ and adenophostin A (AdA), a structural mimetic of InsP3 and the most potent known agonist of the channel. Comparison with the 3.9 Å-resolution structure of InsP3R1 in the Apo-state, also reported herein, reveals the binding arrangement of AdA in the tetrameric channel assembly and striking ligand-induced conformational rearrangements within cytoplasmic domains coupled to the dilation of a hydrophobic constriction at the gate. Together, our results provide critical insights into the mechanistic principles by which ligand-binding allosterically gates InsP3R channel.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Cerebelo/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Activación del Canal Iónico , Conformación Proteica , Adenosina/análogos & derivados , Adenosina/química , Regulación Alostérica , Animales , Microscopía por Crioelectrón/métodos , Receptores de Inositol 1,4,5-Trifosfato/agonistas , Ligandos , Modelos Moleculares , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA