Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Struct Heart ; 8(1): 100234, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38283574

RESUMEN

In 2022, the Food and Drug Administration approved a second mitral transcatheter edge-to-edge repair device for the treatment of primary mitral regurgitation (PASCAL Precision Transcatheter Valve Repair System, Edwards Lifesciences, Irvine, CA). The PASCAL Precision system consists of a guide sheath, implant system, and accessories. The implant system consists of a steerable catheter, an implant catheter, and the implant (PASCAL or PASCAL Ace). The guide sheath and steerable catheter move and flex independently from each other and are not keyed, allowing for freedom of rotation in three dimensions. This manuscript provides an overview of the PASCAL Precision system and describes the basic and advanced steering maneuvers to facilitate effective and safe mitral transcatheter edge-to-edge repair.

2.
Cardiovasc Revasc Med ; 64: 1-4, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38355340

RESUMEN

BACKGROUND: Transcatheter mitral valve replacement (TMVR) faces anatomical challenges, currently limiting widespread adoption. OBJECTIVES: To describe the natural history and prognosis of patients ineligible for various TMVR devices. METHODS: During a 4-year period (2019-2023) 3 TMVR devices (SAPIEN M3, Intrepid and Alta Valve) became available at a single institution (The Christ Hospital, Cincinnati, OH) in the setting of pivotal clinical trials or early feasibility study. Consenting patients who were deemed ineligible ≥1 of these trials were prospectively studied to capture anatomical reasons for ineligibility, cross-over to alternative mitral valve therapies (surgery or high-risk mitral transcatheter edge to edge repair [M-TEER]), and clinical events. RESULTS: A total of 61 patients (out of 71 consenting patients or 85.9 %) were deemed ineligible for TMVR during the study period. The mean age was 79.2 ± 8.8 years, 65.6 % were female, with elevated surgical risk (median STS 4.3, IQR: 2.7-7.3). The 2 most common anatomical reasons for ineligibility were increased risk of left ventricular outflow tract obstruction (LVOTO) (n = 24, 39.3 %) and annular size (n = 29, 47.5 %). During follow-up (median 277 [162-555] days) there were 7 deaths (11.5 %) and 12 (19.7 %) hospitalizations for heart failure. Management strategies included high-risk M-TEER in 11 patients (1 death [9.0 %], 0 HF hospitalizations [0 %]), surgery in 9 patients (0 deaths, 1 HF hospitalizations [11.1 %]), and medical management in 41 patients (6 deaths [14.6 %], 11 HF hospitalizations [26.8 %]) (p = 0.715 for mortality and p = 0.093 for HF hospitalizations). Residual MR ≥ moderate was 0 %, 50 %, and 100 % for surgery, M-TEER and medical treatment, respectively (p < 0.001). CONCLUSIONS: One third of patients deemed ineligible for TMVR are candidates for high-risk M-TEER or surgery with acceptable morbidity and mortality. Our results have practical implications for patient management.


Asunto(s)
Cateterismo Cardíaco , Determinación de la Elegibilidad , Implantación de Prótesis de Válvulas Cardíacas , Prótesis Valvulares Cardíacas , Insuficiencia de la Válvula Mitral , Válvula Mitral , Selección de Paciente , Humanos , Femenino , Masculino , Anciano , Válvula Mitral/cirugía , Válvula Mitral/fisiopatología , Válvula Mitral/diagnóstico por imagen , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Implantación de Prótesis de Válvulas Cardíacas/instrumentación , Implantación de Prótesis de Válvulas Cardíacas/mortalidad , Anciano de 80 o más Años , Factores de Riesgo , Cateterismo Cardíaco/efectos adversos , Cateterismo Cardíaco/instrumentación , Cateterismo Cardíaco/mortalidad , Resultado del Tratamiento , Insuficiencia de la Válvula Mitral/cirugía , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/mortalidad , Insuficiencia de la Válvula Mitral/fisiopatología , Factores de Tiempo , Medición de Riesgo , Estudios Prospectivos , Recuperación de la Función , Diseño de Prótesis , Toma de Decisiones Clínicas
3.
Circ Res ; 91(5): 406-13, 2002 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-12215489

RESUMEN

Angiotensin II (Ang II)-stimulated hypertrophy of vascular smooth muscle cells is mediated by reactive oxygen species (ROS) derived from NAD(P)H oxidases. The upstream signaling mechanisms by which Ang II activates these oxidases are unclear but may include protein kinase C, tyrosine kinases, phosphatidylinositol-3-kinase, and Rac, a small molecular weight G protein. We found that Ang II-stimulated ROS production is biphasic. The first phase occurs rapidly (peak at 30 seconds) and is dependent on protein kinase C activation. The larger second phase of ROS generation (peak at 30 minutes) requires Rac activation, because inhibition of Rac by either Clostridium difficile toxin A or dominant-negative Rac significantly inhibits Ang II-induced ROS production. Phosphatidylinositol-3-kinase inhibitors (wortmannin or LY294002) and the epidermal growth factor (EGF) receptor kinase blocker AG1478 attenuate both Rac activation and ROS generation. The upstream activator of EGF receptor transactivation, c-Src, is also required for ROS generation, because PP1, an Src kinase inhibitor, abrogates the Ang II stimulation of both responses. These results suggest that c-Src, EGF receptor transactivation, phosphatidylinositol-3-kinase, and Rac play important roles in the sustained Ang II-mediated activation of vascular smooth muscle cell NAD(P)H oxidases and provide insight into the integrated signaling mechanisms whereby Ang II stimulation leads to activation of the growth-related NAD(P)H oxidases.


Asunto(s)
Angiotensina II/farmacología , Músculo Liso Vascular/efectos de los fármacos , NADH NADPH Oxidorreductasas/metabolismo , Androstadienos/farmacología , Animales , Células Cultivadas , Cromonas/farmacología , Inhibidores Enzimáticos/farmacología , Receptores ErbB/metabolismo , Citometría de Flujo , Peróxido de Hidrógeno/metabolismo , Indoles/farmacología , Masculino , Maleimidas/farmacología , Morfolinas/farmacología , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , NADH NADPH Oxidorreductasas/efectos de los fármacos , NADPH Oxidasas , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Wortmanina , Proteínas de Unión al GTP rac/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo
4.
Circ Res ; 94(9): 1219-26, 2004 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-15059930

RESUMEN

Smooth muscle cell migration in response to platelet-derived growth factor (PDGF) is a key event in several vascular pathologies, including atherosclerosis and restenosis. PDGF increases intracellular levels of reactive oxygen species (ROS) in vascular smooth muscle cells (VSMCs), but the ROS sensitivity of migration and of the signaling pathways leading to migration are largely unknown. In VSMCs, PDGF dose-dependently increased migration compared with nonstimulated cells, with a maximum increase at 10 ng/mL. Pretreatment with the antioxidant N-acetyl-cysteine, the flavin-containing enzyme inhibitor diphenylene iodonium, or the glutathione peroxidase mimetic ebselen significantly attenuated migration (PDGF alone, 5.0+/-1.1-fold; NAC, 1.8+/-0.2-fold; diphenylene iodonium, 1.4+/-0.3-fold migration; and ebselen, 2.0+/-0.5-fold migration), as did overexpression of catalase. Pretreatment of VSMCs with the Src inhibitor PP1 or dominant-negative Rac adenovirus significantly inhibited migration, but only Src activation was attenuated by ROS inhibitors. Phosphorylation of the Src- and Rac-effector p21-activated protein kinase (PAK) 1 on Thr423 (the phosphoinositide-dependent kinase-1 [PDK1] site) was attenuated by ROS inhibition, and infection of VSMCs with dominant-negative PAK1 adenovirus attenuated migration. Moreover, kinase-inactive K111N-PDK1 inhibited PAK1 phosphorylation on Thr423, and both K111N-PDK1 and Y9F-PDK1 significantly inhibited VSMC migration. PDK1 tyrosine phosphorylation was also ROS dependent. These data indicate that PDGF-induced VSMC migration is ROS dependent and identify the Src/PDK1/PAK1 signaling pathway as an important ROS-sensitive mediator of migration. Such information is critical to understanding the role of ROS in vascular diseases in which migration of VSMCs is an important component.


Asunto(s)
Músculo Liso Vascular/citología , Miocitos del Músculo Liso/enzimología , Factor de Crecimiento Derivado de Plaquetas/farmacología , Proteínas Serina-Treonina Quinasas/fisiología , Especies Reactivas de Oxígeno/farmacología , Familia-src Quinasas/fisiología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Acetilcisteína/farmacología , Animales , Aorta Torácica/citología , Azoles/farmacología , Becaplermina , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Células Cultivadas/efectos de los fármacos , Células Cultivadas/enzimología , Activación Enzimática/efectos de los fármacos , Humanos , Isoindoles , Proteína Quinasa 1 Activada por Mitógenos/fisiología , Proteína Quinasa 3 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/fisiología , Miocitos del Músculo Liso/efectos de los fármacos , Compuestos de Organoselenio/farmacología , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-sis , Ratas , Receptores del Factor de Crecimiento Derivado de Plaquetas/efectos de los fármacos , Receptores del Factor de Crecimiento Derivado de Plaquetas/fisiología , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/fisiología , Transducción de Señal/efectos de los fármacos , Quinasas p21 Activadas , Proteínas de Unión al GTP rac/fisiología , Familia-src Quinasas/antagonistas & inhibidores
5.
Circulation ; 105(2): 174-80, 2002 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-11790697

RESUMEN

BACKGROUND: Plaque disruption is the inciting event for coronary thrombosis and acute coronary syndromes. Multiple factors influence plaque rupture, including the loss of vascular smooth muscle cells (VSMCs). We hypothesized that monocytes/macrophages (MMs) activated by macrophage colony-stimulating factor (M-CSF) are responsible for VSMC death. METHODS AND RESULTS: VSMC apoptosis was markedly increased in the presence of both M-CSF and MMs (58.8+/-3.3%) compared with VSMCs plus M-CSF without MMs (15.7+/-1.5%, P< or =0.00005), VSMCs plus MMs without M-CSF (22.7+/-3.7%, P< or =0.0001), or control VSMCs alone (13.2+/-2.1%, P< or =0.0001). MM cell contact was required for M-CSF-stimulated killing of VSMCs, and MMs displayed an M-CSF concentration-dependent killing effect. Abciximab binds Mac-1 (CD11b/CD18) on MMs. When added to VSMCs exposed to MMs and M-CSF, abciximab (7 microg/mL) significantly reduced VSMC apoptosis (19.1+/-2.2%, P< or =0.0003). Therapeutic doses of tirofiban (0.35 microg/mL) and eptifibatide (5 microg/mL), which inhibit platelet glycoprotein (GP) IIb/IIIa but not Mac-1, did not block activated MM-induced VSMC apoptosis (65.0+/-3.4% and 51.3+/-2.5%, respectively). A recombinant anti-CD-18 antibody had an effect similar to that of abciximab (16.5+/-0.4%). CONCLUSIONS: These data suggest that monocytes and physiological concentrations of M-CSF trigger VSMC apoptosis. Abciximab and specific inhibitors of the Mac-1 receptor can antagonize this process.


Asunto(s)
Apoptosis , Factor Estimulante de Colonias de Macrófagos/farmacología , Monocitos/fisiología , Músculo Liso Vascular/citología , Abciximab , Anticuerpos Monoclonales/farmacología , Adhesión Celular , Células Cultivadas , Técnicas de Cocultivo , Enfermedad de la Arteria Coronaria/complicaciones , Trombosis Coronaria/etiología , Relación Dosis-Respuesta a Droga , Humanos , Fragmentos Fab de Inmunoglobulinas/farmacología , Interleucina-1/farmacología , Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Antígeno de Macrófago-1/inmunología , Macrófagos/fisiología , Microscopía Fluorescente , Monocitos/citología , Monocitos/efectos de los fármacos
6.
Cardiovasc Res ; 59(3): 723-33, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-14499874

RESUMEN

OBJECTIVE: We have previously shown that macrophage colony stimulating factor (M-CSF), a potent survival and mitogenic factor for monocytes/macrophages (MM), enables MM to induce vascular smooth muscle cell (VSMC) apoptosis. The killing requires the binding of MM to VSMC via Mac-1 (CD11b/CD18) on MM and intracellular adhesion molecule-1 (ICAM-1) on VSMC. We hypothesized that, in addition to Mac-1 binding, the killing process requires the activation of the Fas-death receptor pathway, which can be blocked at the level of Fas-Fas ligand interaction. METHODS AND RESULTS: Human peripheral blood monocytes and VSMC were isolated and cultured as previously described. Soluble Fas (sFas) was overexpressed in VSMC by transduction using adenovirus specifying soluble Fas (Ad3hsFas). M-CSF markedly increased the expression of ICAM-1 in VSMC, resulting in enhanced clustering of MM on the surface of VSMC (>/=3 MM per VSMC). MM, but not VSMC, expressed Fas-ligand (FasL), and VSMC apoptosis was inhibited by secretion of sFas by VSMC upon Ad3sFas transduction. CONCLUSIONS: MM and M-CSF-induced VSMC killing requires MM binding to VSMC mediated by Mac-1 and ICAM-1, and Fas-FasL interaction.


Asunto(s)
Activación de Macrófagos , Factor Estimulante de Colonias de Macrófagos/farmacología , Antígeno de Macrófago-1/metabolismo , Músculo Liso Vascular/patología , Receptor fas/metabolismo , Clorometilcetonas de Aminoácidos/farmacología , Análisis de Varianza , Apoptosis , Caspasa 3 , Inhibidores de Caspasas , Técnicas de Cocultivo , Inhibidores Enzimáticos/farmacología , Proteína Ligando Fas , Citometría de Flujo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Unión Proteica , Estimulación Química , Transducción Genética , Receptor fas/genética
7.
Antioxid Redox Signal ; 4(5): 845-54, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12470513

RESUMEN

Reactive oxygen species such as hydrogen peroxide (H(2)O(2)) can positively and negatively modulate vascular smooth muscle cell (VSMC) growth. To investigate these paradoxical effects of H(2)O(2), we examined its effect on apoptosis, cell cycle progression, and cell cycle proteins. High concentrations of H(2)O(2) (500 microM to 1 mM) induced apoptosis, whereas moderate concentrations (100 microM) caused cell cycle arrest in G1. H(2)O(2) (100 microM) blocked serum-stimulated cyclin-dependent kinase-2 (CDK2) activity, but not CDK4 activity, suggesting that cell cycle arrest occurred in part by inhibiting CDK2 activity. The serum-induced increase in cyclin A mRNA was also completely suppressed by H(2)O(2), whereas cyclin D1 mRNA was not affected. In addition, H(2)O(2) caused a dramatic increase in expression of the cell cycle inhibitor p21 mRNA (9.67 +/- 0.94-fold at 2 h) and protein (8.75 +/- 0.08-fold at 8 h), but no change in p27 protein. Finally, H(2)O(2 )transiently increased p53 protein levels (3.16 +/- 1.2-fold at 2 h). Thus, whereas high levels of H(2)O(2) induce apoptosis, moderate concentrations of H(2)O(2) coordinate a set of molecular events leading to arrest of VSMCs at the G1/S checkpoint of the cell cycle. These results provide insight into the mechanisms underlying positive and negative regulation of VSMC growth by H(2)O(2) in vascular disease.


Asunto(s)
Apoptosis/fisiología , Ciclo Celular/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Músculo Liso Vascular/efectos de los fármacos , Animales , Aorta , Apoptosis/efectos de los fármacos , Ciclo Celular/fisiología , Células Cultivadas , Citometría de Flujo , Modelos Biológicos , Músculo Liso Vascular/citología , Ratas
8.
J Biol Chem ; 278(38): 36973-9, 2003 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-12860993

RESUMEN

Translation initiation, the rate-limiting step in protein synthesis, is a key event in vascular smooth muscle cell growth, a major component of vascular disease. Translation initiation is regulated by interaction between PHAS-I and the eukaryotic initiation factor 4E (eIF4E). Although angiotensin II (Ang II)-induced vascular smooth muscle cell hypertrophy requires the generation of reactive oxygen species (ROS), the ROS sensitivity of these events and their upstream activators remain unclear. Here, we investigated the role of ROS in the regulation of PHAS-I phosphorylation on Thr-70 and Ser-65, an event required for the release of eIF4E from PHAS-I. Ang II-induced Ser-65 phosphorylation was ROS-dependent as assessed by pretreatment with ebselen (3.6 +/- 0.2 versus 1.1 +/- 0.2), diphenylene iodonium (3.6 +/- 0.2 versus 1.0 +/- 0.1), and N-acetyl cysteine (3.6 +/- 0.2 versus 1.2 +/- 0.1), but Ang II-stimulated phosphorylation of Thr-70 was ROS-insensitive. Although phosphatidylinositol 3-kinase pathway inhibition by LY294004 blocked both Ser-65 and Thr-70 phosphorylation (3.8 +/- 0.1 versus 0.8 +/- 0.1 and 3.2 +/- 0.2 versus 1.0 +/- 0.01, respectively), protein phosphatase 2A inhibition by okadaic acid selectively increased (3.3 +/- 0.1 versus 5.2 +/- 0.1) and p38 mitogen-activated protein kinase inhibition by SB203580 selectively decreased (3.8 +/- 0.1 versus 1.4 +/- 0.3) Ser-65 phosphorylation. Dominant negative Akt adenovirus also inhibited only Ser-65 phosphorylation (3.7 +/- 0.1 versus 1.0 +/- 0.03). These results demonstrate a unique differential ROS sensitivity of two separate residues on PHAS-I, which seems to be explained by the selective involvement of distinct signaling pathways in the regulation of these phosphorylation events.


Asunto(s)
Angiotensina II/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Músculo Liso Vascular/citología , Biosíntesis de Proteínas , Especies Reactivas de Oxígeno , Acetilcisteína/farmacología , Animales , Aorta/citología , Azoles/farmacología , Western Blotting , Proteínas Portadoras/metabolismo , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Genes Dominantes , Imidazoles/farmacología , Péptidos y Proteínas de Señalización Intracelular , Isoindoles , Ácido Ocadaico/farmacología , Compuestos Onio/farmacología , Compuestos de Organoselenio/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Proteína Fosfatasa 2 , Piridinas/farmacología , Ratas , Serina/química , Treonina/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA