Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 44(20): 9624-9637, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27436288

RESUMEN

The RAG1/RAG2 endonuclease initiates V(D)J recombination at antigen receptor loci but also binds to thousands of places outside of these loci. RAG2 localizes directly to lysine 4 trimethylated histone 3 (H3K4me3) through a plant homeodomain (PHD) finger. The relative contribution of RAG2-dependent and RAG1-intrinsic mechanisms in determining RAG1 binding patterns is not known. Through analysis of deep RAG1 ChIP-seq data, we provide a quantitative description of the forces underlying genome-wide targeting of RAG1. Surprisingly, sequence-specific DNA binding contributes minimally to RAG1 targeting outside of antigen receptor loci. Instead, RAG1 binding is driven by two distinct modes of interaction with chromatin: the first is driven by H3K4me3, promoter-focused and dependent on the RAG2 PHD, and the second is defined by H3K27Ac, enhancer-focused and dependent on 'non-core' portions of RAG1. Based on this and additional chromatin and genomic features, we formulated a predictive model of RAG1 targeting to the genome. RAG1 binding sites predicted by our model correlate well with observed patterns of RAG1-mediated breaks in human pro-B acute lymphoblastic leukemia. Overall, this study provides an integrative model for RAG1 genome-wide binding and off-target activity and reveals a novel role for the RAG1 non-core region in RAG1 targeting.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Genoma , Proteínas de Homeodominio/metabolismo , Animales , Sitios de Unión , Inmunoprecipitación de Cromatina , Inestabilidad Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/metabolismo , Proteínas de Homeodominio/química , Humanos , Ratones , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Recombinación Genética , Recombinación V(D)J
2.
Cell Rep ; 29(12): 3902-3915.e8, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31851922

RESUMEN

Somatic hypermutation (SHM) introduces point mutations into immunoglobulin (Ig) genes but also causes mutations in other parts of the genome. We have used lentiviral SHM reporter vectors to identify regions of the genome that are susceptible ("hot") and resistant ("cold") to SHM, revealing that SHM susceptibility and resistance are often properties of entire topologically associated domains (TADs). Comparison of hot and cold TADs reveals that while levels of transcription are equivalent, hot TADs are enriched for the cohesin loader NIPBL, super-enhancers, markers of paused/stalled RNA polymerase 2, and multiple important B cell transcription factors. We demonstrate that at least some hot TADs contain enhancers that possess SHM targeting activity and that insertion of a strong Ig SHM-targeting element into a cold TAD renders it hot. Our findings lead to a model for SHM susceptibility involving the cooperative action of cis-acting SHM targeting elements and the dynamic and architectural properties of TADs.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Hipermutación Somática de Inmunoglobulina/genética , Línea Celular Tumoral , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Células HEK293 , Humanos , Lentivirus , Masculino , Mutación/genética , Plásmidos/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
3.
Cell Res ; 16(2): 141-7, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16474426

RESUMEN

Recent studies have uncovered two signaling pathways that activate the host innate immunity against viral infection. One of the pathways utilizes members of the Toll-like receptor (TLR) family to detect viruses that enter the endosome through endocytosis. The TLR pathway induces interferon production through several signaling proteins that ultimately lead to the activation of the transcription factors NF-kappaB, IRF3 and IRF7. The other antiviral pathway uses the RNA helicase RIG-I as the receptor for intracellular viral double-stranded RNA. RIG-I activates NF-kappaB and IRFs through the recently identified adaptor protein MAVS, a CARD domain containing protein that resides in the mitochondrial membrane. MAVS is essential for antiviral innate immunity, but it also serves as a target of Hepatitis C virus (HCV), which employs a viral protease to cleave MAVS off the mitochondria, thereby allowing HCV to escape the host immune system.


Asunto(s)
Inmunidad Innata/fisiología , Transducción de Señal/fisiología , Virus/patogenicidad , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Modelos Biológicos , Receptores Toll-Like/metabolismo , Virus/genética , Virus/inmunología
4.
Immunity ; 24(5): 633-42, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16713980

RESUMEN

The mitochondrial antiviral signaling protein (MAVS) mediates the activation of NFkappaB and IRFs and the induction of interferons in response to viral infection. In vitro studies have also suggested that MAVS is required for interferon induction by cytosolic DNA, but the in vivo evidence is lacking. By generating MAVS-deficient mice, here we show that loss of MAVS abolished viral induction of interferons and prevented the activation of NFkappaB and IRF3 in multiple cell types, except plasmacytoid dendritic cells (pDCs). However, MAVS was not required for interferon induction by cytosolic DNA or by Listeria monocytogenes. Mice lacking MAVS were viable and fertile, but they failed to induce interferons in response to poly(I:C) stimulation and were severely compromised in immune defense against viral infection. These results provide the in vivo evidence that the cytosolic viral signaling pathway through MAVS is specifically required for innate immune responses against viral infection.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Inmunidad Innata , Proteínas Mitocondriales/inmunología , Virosis/inmunología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Animales , Southern Blotting , Western Blotting , Fibroblastos/inmunología , Fibroblastos/metabolismo , Fibroblastos/microbiología , Factor 3 Regulador del Interferón/inmunología , Factor 3 Regulador del Interferón/metabolismo , Interferones/inmunología , Interferones/metabolismo , Listeriosis/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Mutantes , Proteínas Mitocondriales/deficiencia , FN-kappa B/inmunología , FN-kappa B/metabolismo , Infecciones por Rhabdoviridae/inmunología , Virus de la Estomatitis Vesicular Indiana/inmunología
5.
Cell ; 122(5): 669-82, 2005 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-16125763

RESUMEN

Viral infection triggers host innate immune responses through activation of the transcription factors NF-kappaB and IRF 3, which coordinately regulate the expression of type-I interferons such as interferon-beta (IFN-beta). Herein, we report the identification of a novel protein termed MAVS (mitochondrial antiviral signaling), which mediates the activation of NF-kappaB and IRF 3 in response to viral infection. Silencing of MAVS expression through RNA interference abolishes the activation of NF-kappaB and IRF 3 by viruses, thereby permitting viral replication. Conversely, overexpression of MAVS induces the expression of IFN-beta through activation of NF-kappaB and IRF 3, thus boosting antiviral immunity. Epistasis experiments show that MAVS is required for the phosphorylation of IRF 3 and IkappaB and functions downstream of RIG-I, an intracellular receptor for viral RNA. MAVS contains an N-terminal CARD-like domain and a C-terminal transmembrane domain, both of which are essential for MAVS signaling. The transmembrane domain targets MAVS to the mitochondria, implicating a new role of mitochondria in innate immunity.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Inmunidad Innata , Proteínas de la Membrana/fisiología , Mitocondrias/inmunología , Proteínas Mitocondriales/fisiología , FN-kappa B/metabolismo , Transducción de Señal/inmunología , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Regulación Bacteriana de la Expresión Génica/genética , Silenciador del Gen , Células HeLa , Humanos , Factor 3 Regulador del Interferón , Factor 7 Regulador del Interferón , Interferón beta/inmunología , Interferones/inmunología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/inmunología , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/inmunología , ARN Bicatenario/inmunología , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/virología , Virus Sendai/genética , Virus Sendai/inmunología , Alineación de Secuencia , Replicación Viral/inmunología
6.
Proc Natl Acad Sci U S A ; 102(49): 17717-22, 2005 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-16301520

RESUMEN

Hepatitis C virus (HCV) is a global epidemic manifested mainly by chronic infection. One strategy that HCV employs to establish chronic infection is to use the viral Ser protease NS3/4A to cleave some unknown cellular targets involved in innate immunity. Here we show that the target of NS3/4A is the mitochondrial antiviral signaling protein, MAVS, that activates NF-kappaB and IFN regulatory factor 3 to induce type-I interferons. NS3/4A cleaves MAVS at Cys-508, resulting in the dislocation of the N-terminal fragment of MAVS from the mitochondria. Remarkably, a point mutation of MAVS at Cys-508 renders MAVS resistant to cleavage by NS3/4A, thus maintaining the ability of MAVS to induce interferons in HCV replicon cells. NS3/4A binds to and colocalizes with MAVS in the mitochondrial membrane, and it can cleave MAVS directly in vitro. These results provide an example of host-pathogen interaction in which the virus evades innate immunity by dislodging a pivotal antiviral protein from the mitochondria and suggest that blocking the cleavage of MAVS by NS3/4A may be applied to the prevention and treatment of HCV.


Asunto(s)
Proteínas Portadoras/metabolismo , Hepacivirus/enzimología , Hepacivirus/inmunología , Inmunidad Innata/inmunología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/química , Línea Celular , Cisteína/genética , Cisteína/metabolismo , Hepacivirus/fisiología , Humanos , Inmunidad Innata/efectos de los fármacos , Interferón beta/farmacología , Péptidos y Proteínas de Señalización Intracelular , Mitocondrias/efectos de los fármacos , Datos de Secuencia Molecular , Unión Proteica , Alineación de Secuencia , Transducción de Señal/efectos de los fármacos , Proteínas no Estructurales Virales/química , Proteínas Virales/química , Replicación Viral
7.
Mol Cell ; 15(4): 535-48, 2004 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-15327770

RESUMEN

The activation of NF-kappaB and IKK requires an upstream kinase complex consisting of TAK1 and adaptor proteins such as TAB1, TAB2, or TAB3. TAK1 is in turn activated by TRAF6, a RING domain ubiquitin ligase that facilitates the synthesis of lysine 63-linked polyubiquitin chains. Here we present evidence that TAB2 and TAB3 are receptors that bind preferentially to lysine 63-linked polyubiquitin chains through a highly conserved zinc finger (ZnF) domain. Mutations of the ZnF domain abolish the ability of TAB2 and TAB3 to bind polyubiquitin chains, as well as their ability to activate TAK1 and IKK. Significantly, replacement of the ZnF domain with a heterologous ubiquitin binding domain restored the ability of TAB2 and TAB3 to activate TAK1 and IKK. We also show that TAB2 binds to polyubiquitinated RIP following TNFalpha stimulation. These results indicate that polyubiquitin binding domains represent a new class of signaling domains that regulate protein kinase activity through a nonproteolytic mechanism.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular , FN-kappa B/metabolismo , Poliubiquitina/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Línea Celular , Activación Enzimática , Humanos , Quinasa I-kappa B , Interleucina-1/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Alineación de Secuencia , Factor 6 Asociado a Receptor de TNF , Factor de Necrosis Tumoral alfa/metabolismo , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA