Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Immunol ; 22(4): 497-509, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33790474

RESUMEN

Classic major histocompatibility complex class I (MHC-I) presentation relies on shuttling cytosolic peptides into the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP). Viruses disable TAP to block MHC-I presentation and evade cytotoxic CD8+ T cells. Priming CD8+ T cells against these viruses is thought to rely solely on cross-presentation by uninfected TAP-functional dendritic cells. We found that protective CD8+ T cells could be mobilized during viral infection even when TAP was absent in all hematopoietic cells. TAP blockade depleted the endosomal recycling compartment of MHC-I molecules and, as such, impaired Toll-like receptor-regulated cross-presentation. Instead, MHC-I molecules accumulated in the ER-Golgi intermediate compartment (ERGIC), sequestered away from Toll-like receptor control, and coopted ER-SNARE Sec22b-mediated vesicular traffic to intersect with internalized antigen and rescue cross-presentation. Thus, when classic MHC-I presentation and endosomal recycling compartment-dependent cross-presentation are impaired in dendritic cells, cell-autonomous noncanonical cross-presentation relying on ERGIC-derived MHC-I counters TAP dysfunction to nevertheless mediate CD8+ T cell priming.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2/genética , Transportadoras de Casetes de Unión a ATP/genética , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Células Dendríticas/metabolismo , Células Dendríticas/virología , Modelos Animales de Enfermedad , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Femenino , Aparato de Golgi/inmunología , Aparato de Golgi/metabolismo , Aparato de Golgi/virología , Antígenos de Histocompatibilidad Clase I/metabolismo , Interacciones Huésped-Patógeno , Humanos , Virus de la Influenza A/patogenicidad , Activación de Linfocitos , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/genética
2.
Cell ; 158(3): 506-21, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25083866

RESUMEN

Adaptation of the endoplasmic reticulum (ER) pathway for MHC class I (MHC-I) presentation in dendritic cells enables cross-presentation of peptides derived from phagocytosed microbes, infected cells, or tumor cells to CD8 T cells. How these peptides intersect with MHC-I molecules remains poorly understood. Here, we show that MHC-I selectively accumulate within phagosomes carrying microbial components, which engage Toll-like receptor (TLR) signaling. Although cross-presentation requires Sec22b-mediated phagosomal recruitment of the peptide loading complex from the ER-Golgi intermediate compartment (ERGIC), this step is independent of TLR signaling and does not deliver MHC-I. Instead, MHC-I are recruited from an endosomal recycling compartment (ERC), which is marked by Rab11a, VAMP3/cellubrevin, and VAMP8/endobrevin and holds large reserves of MHC-I. While Rab11a activity stocks ERC stores with MHC-I, MyD88-dependent TLR signals drive IκB-kinase (IKK)2-mediated phosphorylation of phagosome-associated SNAP23. Phospho-SNAP23 stabilizes SNARE complexes orchestrating ERC-phagosome fusion, enrichment of phagosomes with ERC-derived MHC-I, and subsequent cross-presentation during infection.


Asunto(s)
Presentación de Antígeno , Endosomas/metabolismo , Fagosomas/metabolismo , Receptores Toll-Like/metabolismo , Animales , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Tejido Linfoide , Ratones , Ovalbúmina/inmunología , Fagocitosis , Fosforilación , Transporte de Proteínas , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Receptores Toll-Like/inmunología , Proteínas de Unión al GTP rab/metabolismo
3.
Biochim Biophys Acta ; 1850(3): 449-60, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24923865

RESUMEN

BACKGROUND: ABC transporters ubiquitously found in all kingdoms of life move a broad range of solutes across membranes. Crystal structures of four distinct types of ABC transport systems have been solved, shedding light on different conformational states within the transport process. Briefly, ATP-dependent flipping between inward- and outward-facing conformations allows directional transport of various solutes. SCOPE OF REVIEW: The heterodimeric transporter associated with antigen processing TAP1/2 (ABCB2/3) is a crucial element of the adaptive immune system. The ABC transport complex shuttles proteasomal degradation products into the endoplasmic reticulum. These antigenic peptides are loaded onto major histocompatibility complex class I molecules and presented on the cell surface. We detail the functional modules of TAP, its ATPase and transport cycle, and its interaction with and modulation by other cellular components. In particular, we emphasize how viral factors inhibit TAP activity and thereby prevent detection of the infected host cell by cytotoxic T-cells. MAJOR CONCLUSIONS: Merging functional details on TAP with structural insights from related ABC transporters refines the understanding of solute transport. Although human ABC transporters are extremely diverse, they still may employ conceptually related transport mechanisms. Appropriately, we delineate a working model of the transport cycle and how viral factors arrest TAP in distinct conformations. GENERAL SIGNIFICANCE: Deciphering the transport cycle of human ABC proteins is the major issue in the field. The defined peptidic substrate, various inhibitory viral factors, and its role in adaptive immunity provide unique tools for the investigation of TAP, making it an ideal model system for ABC transporters in general. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/inmunología , Inmunidad Adaptativa/inmunología , Presentación de Antígeno/inmunología , Péptidos/inmunología , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Transporte Biológico/inmunología , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/metabolismo , Humanos , Modelos Moleculares , Péptidos/metabolismo , Conformación Proteica
4.
Mol Microbiol ; 87(5): 1013-28, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23289512

RESUMEN

The multicomponent type VI secretion system (T6SS) mediates the transport of effector proteins by puncturing target membranes. T6SSs are suggested to form a contractile nanomachine, functioning similar to the cell-puncturing device of tailed bacteriophages. The T6SS members VipA/VipB form tubular complexes and are predicted to function in analogy to viral tail sheath proteins by providing the energy for secretion via contraction. The ATPase ClpV disassembles VipA/VipB tubules in vitro, but the physiological relevance of tubule disintegration remained unclear. Here, we show that VipA/VipB tubules localize near-perpendicular to the inner membrane of Vibrio cholerae cells and exhibit repetitive cycles of elongation, contraction and disassembly. VipA/VipB tubules are decorated by ClpV in vivo and become static in ΔclpV cells, indicating that ClpV is required for tubule removal. VipA/VipB tubules mislocalize in ΔclpV cells and exhibit a reduced frequency of tubule elongation, indicating that ClpV also suppresses the spontaneous formation of contracted, non-productive VipA/VipB tubules. ClpV activity is restricted to the contracted state of VipA/VipB, allowing formation of functional elongated tubules at a T6SS assembly. Targeting of an unrelated ATPase to VipA/VipB is sufficient to replace ClpV function in vivo, suggesting that ClpV activity is autonomously regulated by VipA/VipB conformation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Vibrio cholerae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Transporte de Proteínas , Vibrio cholerae/química , Vibrio cholerae/enzimología , Vibrio cholerae/genética
5.
FEBS Lett ; 587(6): 810-7, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23416293

RESUMEN

The Saccharomyces cerevisiae AAA+ protein Hsp104 and its Escherichia coli counterpart ClpB cooperate with Hsp70 chaperones to refold aggregated proteins and fragment prion fibrils. Hsp104/ClpB activity is regulated by interaction of the M-domain with the first ATPase domain (AAA-1), controlling ATP turnover and Hsp70 cooperation. Guanidinium hydrochloride (GdnHCl) inhibits Hsp104/ClpB activity, leading to prion curing. We show that GdnHCl binding exerts dual effects on Hsp104/ClpB. First, GdnHCl strengthens M-domain/AAA-1 interaction, stabilizing Hsp104/ClpB in a repressed conformation and abrogating Hsp70 cooperation. Second, GdnHCl inhibits continuous ATP turnover by AAA-1. These findings provide the mechanistic basis for prion curing by GdnHCl.


Asunto(s)
Proteínas de Escherichia coli/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Guanidina/farmacología , Proteínas HSP70 de Choque Térmico/química , Proteínas de Choque Térmico/antagonistas & inhibidores , Priones/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Saccharomyces cerevisiae/efectos de los fármacos , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Endopeptidasa Clp , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Reporteros , Guanidina/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Luciferasas/genética , Microscopía Fluorescente , Priones/metabolismo , Unión Proteica , Desnaturalización Proteica , Dominios y Motivos de Interacción de Proteínas , Replegamiento Proteico , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nat Struct Mol Biol ; 19(12): 1347-55, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23160352

RESUMEN

Bacteria, fungi and plants rescue aggregated proteins using a powerful bichaperone system composed of an Hsp70 chaperone and an Hsp100 AAA+ disaggregase. In Escherichia coli, the Hsp70 chaperone DnaK binds aggregates and targets the disaggregase ClpB to the substrate. ClpB hexamers use ATP to thread substrate polypeptides through the central pore, driving disaggregation. How ClpB finds DnaK and regulates threading remains unclear. To dissect the disaggregation mechanism, we separated these steps using primarily chimeric ClpB-ClpV constructs that directly recognize alternative substrates, thereby obviating DnaK involvement. We show that ClpB has low intrinsic disaggregation activity that is normally repressed by the ClpB middle (M) domain. In the presence of aggregate, DnaK directly binds M-domain motif 2, increasing ClpB ATPase activity to unleash high ClpB threading power. Our results uncover a new function for Hsp70: the coupling of substrate targeting to AAA+ chaperone activation at aggregate surfaces.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Unión Proteica
7.
Nat Struct Mol Biol ; 19(12): 1338-46, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23160353

RESUMEN

The ring-forming AAA+ protein ClpB cooperates with the DnaK chaperone system to refold aggregated proteins in Escherichia coli. The M domain, a ClpB-specific coiled-coil structure with two wings, motif 1 and motif 2, is essential to disaggregation, but the positioning and mechanistic role of M domains in ClpB hexamers remain unresolved. We show that M domains nestle at the ClpB ring surface, with both M-domain motifs contacting the first ATPase domain (AAA-1). Both wings contribute to maintaining a repressed ClpB activity state. Motif 2 docks intramolecularly to AAA-1 to regulate ClpB unfolding power, and motif 1 contacts a neighboring AAA-1 domain. Mutations that stabilize motif 2 docking repress ClpB, whereas destabilization leads to derepressed ClpB activity with greater unfolding power that is toxic in vivo. Our results underline the vital nature of tight ClpB activity control and elucidate a regulated M-domain toggle control mechanism.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Proteínas de Choque Térmico/fisiología , Secuencia de Aminoácidos , Endopeptidasa Clp , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Chaperonas Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA