Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Dev Biol ; 477: 85-97, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34023332

RESUMEN

Trachea-esophageal defects (TEDs), including esophageal atresia (EA), tracheoesophageal fistula (TEF), and laryngeal-tracheoesophageal clefts (LTEC), are a spectrum of life-threatening congenital anomalies in which the trachea and esophagus do not form properly. Up until recently, the developmental basis of these conditions and how the trachea and esophagus arise from a common fetal foregut was poorly understood. However, with significant advances in human genetics, organoids, and animal models, and integrating single cell genomics with high resolution imaging, we are revealing the molecular and cellular mechanisms that orchestrate tracheoesophageal morphogenesis and how disruption in these processes leads to birth defects. Here we review the current understanding of the genetic and developmental basis of TEDs. We suggest future opportunities for integrating developmental mechanisms elucidated from animals and organoids with human genetics and clinical data to gain insight into the genotype-phenotype basis of these heterogeneous birth defects. Finally, we envision how this will enhance diagnosis, improve treatment, and perhaps one day, lead to new tissue replacement therapy.


Asunto(s)
Esófago/anomalías , Tráquea/anomalías , Animales , Anomalías del Sistema Digestivo/diagnóstico , Anomalías del Sistema Digestivo/etiología , Anomalías del Sistema Digestivo/genética , Modelos Animales de Enfermedad , Esófago/embriología , Humanos , Organoides/embriología , Tráquea/embriología
2.
Methods Cell Biol ; 159: 1-22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32586439

RESUMEN

The human and murine esophagus have some substantial differences that limit the utility of mouse as a model to study human esophagus development and disease. Due to these limitations several recent reports describe the development of methods to generate human esophageal tissues via the directed differentiation of pluripotent stem cells. Methods for differentiation are based on knowledge of years of studying embryonic development of the esophagus in vertebrate animal models. Esophageal tissues derived from human pluripotent stem cells have been used to study both development and diseases affecting the esophagus. Here, we provide a detailed protocol for the directed differentiation of human pluripotent stem cells into human esophageal organoids and organotypic raft cultures, that are highly similar, morphologically and transcriptionally, to the human esophagus epithelium. We discuss limitations of the current esophageal models and the importance of engineering more complex tissue models with muscle and enteric nerves. Moving forward, these models might be utilized for the development of personalized treatments, as well as other therapeutic solutions.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Esófago/citología , Organoides/citología , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular , Crioultramicrotomía , Fibroblastos/citología , Técnica del Anticuerpo Fluorescente , Células Madre Embrionarias Humanas/citología , Humanos , Queratinocitos/citología , Ratones , Fijación del Tejido
3.
Cell Death Dis ; 9(11): 1116, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389906

RESUMEN

Apoptotic cells expose Phosphatidylserine (PS), that serves as an "eat me" signal for engulfing cells. Previous studies have shown that PS also marks degenerating axonsduring developmental pruning or in response to insults (Wallerian degeneration), but the pathways that control PS exposure on degenerating axons are largely unknown. Here, we used a series of in vitro assays to systematically explore the regulation of PS exposure during axonal degeneration. Our results show that PS exposure is regulated by the upstream activators of axonal pruning and Wallerian degeneration. However, our investigation of signaling further downstream revealed divergence between axon degeneration and PS exposure. Importantly, elevation of the axonal energetic status hindered PS exposure, while inhibition of mitochondrial activity caused PS exposure, without degeneration. Overall, our results suggest that the levels of PS on the outer axonal membrane can be dissociated from the degeneration process and that the axonal energetic status plays a key role in the regulation of PS exposure.


Asunto(s)
Ganglios Espinales/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Fosfatidilserinas/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Degeneración Walleriana/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas del Dominio Armadillo/deficiencia , Proteínas del Dominio Armadillo/genética , Axotomía , Biomarcadores/metabolismo , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Embrión de Mamíferos , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Expresión Génica , Ratones , Ratones Noqueados , Técnicas Analíticas Microfluídicas , Factor de Crecimiento Nervioso/farmacología , Plasticidad Neuronal/genética , Fosfatidilserinas/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Técnicas de Cultivo de Tejidos , Vincristina/farmacología , Degeneración Walleriana/genética , Proteína X Asociada a bcl-2/deficiencia , Proteína X Asociada a bcl-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA