Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 64(16): 5195-205, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24098048

RESUMEN

The growing pollen tube is central to plant reproduction and is a long-standing model for cellular tip growth in biology. Rapid osmotically driven growth is maintained under variable conditions, which requires osmosensing and regulation. This study explores the mechanism of water entry and the potential role of osmosensory regulation in maintaining pollen growth. The osmotic permeability of the plasmalemma of Lilium pollen tubes was measured from plasmolysis rates to be 1.32±0.31×10(-3) cm s(-1). Mercuric ions reduce this permeability by 65%. Simulations using an osmotic model of pollen tube growth predict that an osmosensor at the cell membrane controls pectin deposition at the cell tip; inhibiting the sensor is predicted to cause tip bursting due to cell wall thinning. It was found that adding mercury to growing pollen tubes caused such a bursting of the tips. The model indicates that lowering the osmotic permeability per se does not lead to bursting but rather to thickening of the tip. The time course of induced bursting showed no time lag and was independent of mercury concentration, compatible with a surface site of action. The submaximal bursting response to intermediate mercuric ion concentration was independent of the concentration of calcium ions, showing that bursting is not due to a competitive inhibition of calcium binding or entry. Bursting with the same time course was also shown by cells growing on potassium-free media, indicating that potassium channels (implicated in mechanosensing) are not involved in the bursting response. The possible involvement of mercury-sensitive water channels as osmosensors and current knowledge of these in pollen cells are discussed.


Asunto(s)
Canales Iónicos/metabolismo , Lilium/metabolismo , Mercurio/metabolismo , Proteínas de Plantas/metabolismo , Polen/metabolismo , Agua/metabolismo , Calcio/metabolismo , Pared Celular/metabolismo , Lilium/crecimiento & desarrollo , Ósmosis , Polen/crecimiento & desarrollo , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Potasio/metabolismo
2.
Int Rev Cytol ; 215: 319-50, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11952233

RESUMEN

The evidence that a major fraction of water crosses the paracellular route during isotonic fluid transfer is reviewed together with a description of the theory and experimental results derived from extracellular probe studies. Four transporting epithelia which have been studied using the method are gallbladder, intestine, Malpighian tubule, and salivary gland. It is concluded that paracellular probe flows are not due to simple convection generated by osmotic flow through the junctions but are generated by active fluid transport within the junction: a mechano-osmotic process. The geometry of the pathway involved would indicate that some salt accompanies the paracellular fluid, representing a hypo-osmotic flow. Transport of salt by the cell route, which may be accompanied by some water, represents a hypertonic flow. The problem then becomes one of balancing the two to produce an isotonic transportate. We suggest, using recent data from knockout mice, that some aquaporins are functioning in different epithelial tissues as osmo-comparators within a feedback loop that regulates the paracellular fluid flow rate. This results in an overall quasi-isotonic transport by the epithelium. The model is applied to forward-facing systems such as proximal tubule and backward-facing systems such as exocrine glands.


Asunto(s)
Agua Corporal/metabolismo , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Espacio Extracelular/metabolismo , Equilibrio Hidroelectrolítico/fisiología , Animales , Acuaporinas/metabolismo , Comunicación Celular/fisiología , Membrana Celular/ultraestructura , Células Epiteliales/ultraestructura , Humanos , Uniones Intercelulares/metabolismo , Uniones Intercelulares/ultraestructura , Ósmosis/fisiología
3.
PLoS One ; 7(5): e36585, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22615784

RESUMEN

Pollen tube growth is central to the sexual reproduction of plants and is a longstanding model for cellular tip growth. For rapid tip growth, cell wall deposition and hardening must balance the rate of osmotic water uptake, and this involves the control of turgor pressure. Pressure contributes directly to both the driving force for water entry and tip expansion causing thinning of wall material. Understanding tip growth requires an analysis of the coordination of these processes and their regulation. Here we develop a quantitative physiological model which includes water entry by osmosis, the incorporation of cell wall material and the spreading of that material as a film at the tip. Parameters of the model have been determined from the literature and from measurements, by light, confocal and electron microscopy, together with results from experiments made on dye entry and plasmolysis in Lilium longiflorum. The model yields values of variables such as osmotic and turgor pressure, growth rates and wall thickness. The model and its predictive capacity were tested by comparing programmed simulations with experimental observations following perturbations of the growth medium. The model explains the role of turgor pressure and its observed constancy during oscillations; the stability of wall thickness under different conditions, without which the cell would burst; and some surprising properties such as the need for restricting osmotic permeability to a constant area near the tip, which was experimentally confirmed. To achieve both constancy of pressure and wall thickness under the range of conditions observed in steady-state growth the model reveals the need for a sensor that detects the driving potential for water entry and controls the deposition rate of wall material at the tip.


Asunto(s)
Lilium/fisiología , Modelos Teóricos , Ósmosis , Polen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA