Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Mol Psychiatry ; 28(9): 3829-3841, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37783788

RESUMEN

Psilocybin (a classic serotonergic psychedelic drug) has received appraisal for use in psychedelic-assisted therapy of several psychiatric disorders. A less explored topic concerns the use of repeated low doses of psychedelics, at a dose that is well below the psychedelic dose used in psychedelic-assisted therapy and often referred to as microdosing. Psilocybin microdose users frequently report increases in mental health, yet such reports are often highly biased and vulnerable to placebo effects. Here we establish and validate a psilocybin microdose-like regimen in rats with repeated low doses of psilocybin administration at a dose derived from occupancy at rat brain 5-HT2A receptors in vivo. The rats tolerated the repeated low doses of psilocybin well and did not manifest signs of anhedonia, anxiety, or altered locomotor activity. There were no deficits in pre-pulse inhibition of the startle reflex, nor did the treatment downregulate or desensitize the 5-HT2A receptors. However, the repeated low doses of psilocybin imparted resilience against the stress of multiple subcutaneous injections, and reduced the frequency of self-grooming, a proxy for human compulsive actions, while also increasing 5-HT7 receptor expression and synaptic density in the paraventricular nucleus of the thalamus. These results establish a well-validated regimen for further experiments probing the effects of repeated low doses of psilocybin. Results further substantiate anecdotal reports of the benefits of psilocybin microdosing as a therapeutic intervention, while pointing to a possible physiological mechanism.


Asunto(s)
Alucinógenos , Resiliencia Psicológica , Humanos , Animales , Ratas , Psilocibina/farmacología , Psilocibina/uso terapéutico , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Núcleos Talámicos de la Línea Media , Serotonina , Conducta Compulsiva
2.
J Labelled Comp Radiopharm ; 67(2): 59-66, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171540

RESUMEN

The σ-1 receptor is a non-opioid transmembrane protein involved in various human pathologies including neurodegenerative diseases, inflammation, and cancer. The previously published ligand [18 F]FTC-146 is among the most promising tools for σ-1 molecular imaging by positron emission tomography (PET), with a potential for application in clinical diagnostics and research. However, the published six- or four-step synthesis of the tosyl ester precursor for its radiosynthesis is complicated and time-consuming. Herein, we present a simple one-step precursor synthesis followed by a one-step fluorine-18 labeling procedure that streamlines the preparation of [18 F]FTC-146. Instead of a tosyl-based precursor, we developed a one-step synthesis of the precursor analog AM-16 containing a chloride leaving group for the SN 2 reaction with 18 F-fluoride. 18 F-fluorination of AM-16 led to a moderate decay-corrected radiochemical yield (RCY = 7.5%) with molar activity (Am ) of 45.9 GBq/µmol. Further optimization of this procedure should enable routine radiopharmaceutical production of this promising PET tracer.


Asunto(s)
Tomografía de Emisión de Positrones , Receptor Sigma-1 , Humanos , Tomografía de Emisión de Positrones/métodos , Radioisótopos de Flúor/química , Azepinas , Benzotiazoles , Radiofármacos
3.
Bioorg Med Chem Lett ; 80: 129088, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36455802

RESUMEN

Tucatinib is a selective human epidermal growth factor receptor 2 (HER2) tyrosine kinase inhibitor approved by the U.S. Food and Drug Administration (FDA) in April 2020 for HER2-positive lesions in metastatic breast cancer patients, including CNS metastases. In this article, we attempted to develop the first small molecule, blood-brain-barrier (BBB) penetrant HER2 PET imaging probe based on tucatinib. [11C]tucatinib was synthesized via a Stille-coupling from the respective trimethylstannyl precursor and its biodistribution was evaluated in NMRI nude mice bearing HER2-overexpressing human ovarian cancer cells (SKOV-3). No significant tumor accumulation was observed despite its high affinity for HER-2 receptors (IC50 = 6.9 nM). High liver and intestinal uptake indicate that [11C]tucatinib is too lipophilic to be used as a tumor targeting PET tracer. Therefore, chemical modifications of [11C]tucatinib are needed to increase the polarity for tumor imaging. Tucatinib as an FDA approved drug is still an interesting platform to develop the first small molecule HER2-selective PET tracer. The study highlights the differences between a drug, which needs to be effective, and an imaging agent, which is dependent on contrast.


Asunto(s)
Neoplasias de la Mama , Receptor ErbB-2 , Humanos , Animales , Ratones , Femenino , Ratones Desnudos , Distribución Tisular , Receptor ErbB-2/metabolismo , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Mama/patología
4.
J Labelled Comp Radiopharm ; 66(12): 393-399, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37653688

RESUMEN

CRANAD-102, a selective near-infrared fluorescent tracer targeting soluble amyloid-ß (Aß) species, has recently attracted attention due to its potential to be used as a diagnostic tool for early stages of Alzheimer's disease (AD). Development of a positron emission tomography (PET) tracer based on CRANAD-102 could as such allow to noninvasively study soluble and protofibrillar species of Aß in humans. These soluble and protofibrillar species are thought to be responsible to cause AD. Within this work, we successfully 11 C-labeled CRANAD-102 via a Suzuki-Miyaura reaction in a RCС of 48 ± 9%, with a RCP of >96% and a molar activity (Am ) of 25 ± 7 GBq/µmol. Future studies have to be conducted to evaluate if [11 C]CRANAD-102 can be used to detect soluble protofibrils in vivo and if [11 C]CRANAD-102 can be used to detect AD earlier as possible with current diagnostics.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Colorantes Fluorescentes , Tomografía de Emisión de Positrones/métodos
5.
J Labelled Comp Radiopharm ; 66(1): 22-30, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36539610

RESUMEN

Pretargeting imaging has gained a lot of prominence, due to its excellent bioorthogonality and improved imaging contrast compared to conventional imaging. A new iodo tetrazine (Tz) derivative has been synthesized and further developed into the corresponding iodine-125 (125 I) analog (12), via the trimethylstannane precursor. Radiolabeling with either N-chlorosuccinimide or chloramine-T, in either MeCN or MeOH proceeded with a radiochemical conversion (RCC) of >80%. Subsequent deprotection only proved successful, among the tested conditions, when the radiolabeled Tz was stirred in 6-M HCl(aq.) at 60°C for 2.5 h. To the best of our knowledge, this is the first H-tetrazine labeled with iodine. In vivo investigations on the pretargeting ability of 12 are currently under way.


Asunto(s)
Compuestos Heterocíclicos , Radiofármacos , Radioisótopos de Yodo , Química Clic/métodos , Línea Celular Tumoral
6.
Chembiochem ; 23(23): e202200539, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36333105

RESUMEN

Tetrazine (Tz)-trans-cyclooctene (TCO) ligation is an ultra-fast and highly selective reaction and it is particularly suited to label biomolecules under physiological conditions. As such, a 3 H-Tz based synthon would have wide applications for in vitro/ex vivo assays. In this study, we developed a 3 H-labeled Tz and characterized its potential for application to pretargeted autoradiography. Several strategies were explored to synthesize such a Tz. However, classical approaches such as reductive halogenation failed. For this reason, we designed a Tz containing an aldehyde and explored the possibility of reducing this group with NaBT4 . This approach was successful and resulted in [3 H]-(4-(6-(pyridin-2-yl)-1,2,4,5-tetrazin-3-yl)phenyl)methan-t-ol with a radiochemical yield of 22 %, a radiochemical purity of 96 % and a molar activity of 0.437 GBq/µmol (11.8 Ci/mmol). The compound was successfully applied to pretargeted autoradiography. Thus, we report the synthesis of the first 3 H-labeled Tz and its successful application as a labeling building block.


Asunto(s)
Compuestos Heterocíclicos , Radiofármacos , Línea Celular Tumoral , Radiofármacos/química , Ciclooctanos/química
7.
Chemistry ; 28(61): e202201847, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35851967

RESUMEN

Combining nanotechnology and bioorthogonal chemistry for theranostic strategies offers the possibility to develop next generation nanomedicines. These materials are thought to increase therapeutic outcome and improve current cancer management. Due to their size, nanomedicines target tumors passively. Thus, they can be used for drug delivery purposes. Bioorthogonal chemistry allows for a pretargeting approach. Higher target-to-background drug accumulation ratios can be achieved. Pretargeting can also be used to induce internalization processes or trigger controlled drug release. Colloidal gold nanoparticles (AuNPs) have attracted widespread interest as drug delivery vectors within the last decades. Here, we demonstrate for the first time the possibility to successfully ligate AuNPs in vivo to pretargeted monoclonal antibodies. We believe that this possibility will facilitate the development of AuNPs for clinical use and ultimately, improve state-of-the-art patient care.


Asunto(s)
Oro , Nanopartículas del Metal , Humanos , Oro Coloide , Química Clic , Línea Celular Tumoral , Anticuerpos Monoclonales
8.
Macromol Rapid Commun ; 43(12): e2100655, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34888977

RESUMEN

Functionalization of macromolecules (antibodies, polymers, nanoparticles) with click-reactive groups greatly enhances the versatility of their potential applications. Click chemistry based on tetrazine - trans-cyclooctene (TCO) ligation is especially promising and is already widely applied for pretargeted imaging and therapy. Indirect radiolabeling of TCO-functionalized macromolecules with substoichiometric amounts of radioactive tetrazines is a convenient way to monitor the fate of those macromolecules by means of positron emission tomography (PET) imaging after their administration into the test subject. In this work, the preparation is reported of TCO-containing graft copolymers, namely PeptoBrushes (polyglutamic acid-graft-polysarcosine), novel [11 C]carboxylated tetrazines, and their combined use in radiolabeling the polymer by inverse electron demand Diels Alder reaction, to investigate it is potential for an application in pretarget imaging or injectable brachytherapy. The procedure for [11 C]tetrazine production is easy and scalable, while indirect TCO-PeptoBrushes labeling with these [11 C]tetrazines is mild, fast, and quantitative. This strategy allows facile 11 C-labeling of diverse TCO-functionalized macromolecules, so that their localization and distribution shortly after injection can be assessed by PET.


Asunto(s)
Ciclooctanos , Tomografía de Emisión de Positrones , Radioisótopos de Carbono , Química Clic/métodos , Reacción de Cicloadición , Ciclooctanos/química , Tomografía de Emisión de Positrones/métodos
9.
J Neurochem ; 159(4): 660-689, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34532856

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Two hallmarks of PD are the accumulation of alpha-synuclein and the loss of dopaminergic neurons in the brain. There is no cure for PD, and all existing treatments focus on alleviating the symptoms. PD diagnosis is also based on the symptoms, such as abnormalities of movement, mood, and cognition observed in the patients. Molecular imaging methods such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) can detect objective alterations in the neurochemical machinery of the brain and help diagnose and study neurodegenerative diseases. This review addresses the application of functional MRI, PET, and SPECT in PD patients. We provide an overview of the imaging targets, discuss the rationale behind target selection, the agents (tracers) with which the imaging can be performed, and the main findings regarding each target's state in PD. Molecular imaging has proven itself effective in supporting clinical diagnosis of PD and has helped reveal that PD is a heterogeneous disorder, which has important implications for the development of future therapies. However, the application of molecular imaging for early diagnosis of PD or for differentiation between PD and atypical parkinsonisms has remained challenging. The final section of the review is dedicated to new imaging targets with which one can detect the PD-related pathological changes upstream from dopaminergic degeneration. The foremost of those targets is alpha-synuclein. We discuss the progress of tracer development achieved so far and challenges on the path toward alpha-synuclein imaging in humans.


Asunto(s)
Neuroimagen/métodos , Enfermedad de Parkinson/diagnóstico por imagen , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/terapia , Tomografía de Emisión de Positrones , Tomografía Computarizada de Emisión de Fotón Único , alfa-Sinucleína/metabolismo
10.
Molecules ; 26(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494416

RESUMEN

Pretargeted nuclear imaging for the diagnosis of various cancers is an emerging and fast developing field. The tetrazine ligation is currently considered the most promising reaction in this respect. Monoclonal antibodies are often the preferred choice as pretargeting vector due to their outstanding targeting properties. In this work, we evaluated the performance of [64Cu]Cu-NOTA-PEG7-H-Tz using a setup we previously used for [111In]In-DOTA-PEG11-BisPy-Tz, thereby allowing for comparison of the performance of these two promising pretargeting imaging agents. The evaluation included a comparison of the physicochemical properties of the compounds and their performance in an ex vivo blocking assay. Finally, [64Cu]Cu-NOTA-PEG7-H-Tz was evaluated in a pretargeted imaging study and compared to [111In]In-DOTA-PEG11-BisPy-Tz. Despite minor differences, this study indicated that both evaluated tetrazines are equally suited for pretargeted imaging.


Asunto(s)
Neoplasias del Colon , Tomografía de Emisión de Positrones , Radioinmunoterapia , Radiofármacos , Animales , Línea Celular Tumoral , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/metabolismo , Neoplasias del Colon/radioterapia , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Radiofármacos/síntesis química , Radiofármacos/química , Radiofármacos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Labelled Comp Radiopharm ; 63(2): 46-55, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31674045

RESUMEN

The serotonin 7 (5-HT7 ) receptor is suggested to be involved in a broad variety of CNS disorders, but very few in vivo tools exist to study this important target. Molecular imaging with positron emission tomography (PET) would enable an in vivo characterization of the 5-HT7 receptor. However, no clinical PET radiotracer exists for this receptor, and thus we aimed to develop such a tracer. In this study, we present the preclinical evaluation of [11 C]Cimbi-701. Cimbi-701 was synthesized in a one-step procedure starting from SB-269970. Its selectivity profile was determined using an academic screening platform (NIMH Psychoactive Drug Screening Program). Successful radiolabeling of [11 C]Cimbi-701 and subsequent in vivo evaluation was conducted in rats, pigs and baboon. In vivo specificity was investigated by 5-HT7 and σ receptor blocking studies. P-gp efflux transporter dependency was investigated using elacridar. [11 C]Cimbi-701 could successfully be synthesized. Selectivity profiling revealed high affinity for the 5-HT7 (Ki = 18 nM), σ-1 (Ki = 9.2 nM) and σ-2 (Ki = 1.6 nM) receptors. In rats, [11 C]Cimbi-701 acted as a strong P-gp substrate. After P-gp inhibition, rat brain uptake could specifically be blocked by 5-HT7 and σ receptor ligands. In pig, high brain uptake and specific 5-HT7 and σ-receptor binding was found for [11 C]Cimbi-701 without P-gp inhibition. Finally, low brain uptake was found in baboons. Both the specific σ-receptor binding and the low brain uptake of [11 C]Cimbi-701 displayed in baboon discouraged further translation to humans. Instead, we suggest exploration of this structural class as results indicate that selective 5-HT7 receptor imaging might be possible when more selective non-P-gp substrates are identified.


Asunto(s)
Tomografía de Emisión de Positrones , Receptores de Serotonina 5-HT2/metabolismo , Animales , Técnicas de Química Sintética , Masculino , Radioquímica , Ratas , Porcinos , Distribución Tisular
12.
Med Res Rev ; 39(3): 1014-1052, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30450619

RESUMEN

The concept of the high-affinity state postulates that a certain subset of G-protein-coupled receptors is primarily responsible for receptor signaling in the living brain. Assessing the abundance of this subset is thus potentially highly relevant for studies concerning the responses of neurotransmission to pharmacological or physiological stimuli and the dysregulation of neurotransmission in neurological or psychiatric disorders. The high-affinity state is preferentially recognized by agonists in vitro. For this reason, agonist tracers have been developed as tools for the noninvasive imaging of the high-affinity state with positron emission tomography (PET). This review provides an overview of agonist tracers that have been developed for PET imaging of the brain, and the experimental paradigms that have been developed for the estimation of the relative abundance of receptors configured in the high-affinity state. Agonist tracers appear to be more sensitive to endogenous neurotransmitter challenge than antagonists, as was originally expected. However, other expectations regarding agonist tracers have not been fulfilled. Potential reasons for difficulties in detecting the high-affinity state in vivo are discussed.


Asunto(s)
Tomografía de Emisión de Positrones , Radiofármacos/química , Receptores Acoplados a Proteínas G/agonistas , Animales , Sistema Nervioso Central/diagnóstico por imagen , Endocitosis , Humanos , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Transducción de Señal
13.
Bioorg Med Chem Lett ; 29(8): 986-990, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30795854

RESUMEN

Pretargeted nuclear imaging based on the ligation between tetrazines and nano-sized targeting agents functionalized with trans-cyclooctene (TCO) has recently been shown to improve both imaging contrast and dosimetry in nuclear imaging of nanomedicines. Herein, we describe the improved radiosynthesis of a 11C-labeled tetrazine ([11C]AE-1) and its preliminary evaluation in both mice and pigs. Pretargeted imaging in mice was carried out using both a new TCO-functionalized polyglutamic acid and a previously reported TCO-functionalized bisphosphonate system as targeting agents. Unfortunately, pretargeted imaging was not successful using these targeting agents in pair with [11C]AE-1. However, brain imaging in pig indicated that the tracer crossed the blood-brain-barrier. Hence, we suggest that this tetrazine scaffold could be used as a starting point for the development of pretargeted brain imaging, which has so far been a challenging task.


Asunto(s)
Radioisótopos de Carbono/química , Tomografía de Emisión de Positrones , Radiofármacos/química , Tetrazoles/química , Animales , Encéfalo/diagnóstico por imagen , Radioisótopos de Carbono/metabolismo , Difosfonatos/química , Marcaje Isotópico , Ratones , Neoplasias/diagnóstico por imagen , Ácido Poliglutámico/química , Radiofármacos/metabolismo , Porcinos , Tetrazoles/metabolismo , Distribución Tisular
14.
European J Org Chem ; 2019(8): 1722-1725, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-31007573

RESUMEN

Fluorine-18 possesses outstanding decay characteristics for positron emission tomography (PET) imaging. Therefore, it is ideally suited for clinical applications. As such, improved strategies to incorporate fluorine-18 into bioactive molecules are of utmost importance. Indirect 18F-labeling with amino-functionalized synthons is a convenient and versatile approach to synthesize a broad variety of PET tracers. Herein, we report a method to convert 18F-labeled azides to primary amines by means of the Staudinger reduction. Aliphatic and aromatic 18F-labeled azides were converted into the corresponding amines with high conversion yields. The method was easily automated. From a broader perspective, the applied strategy results in two useful synthons from a single precursor and thus increases the flexibility to label diverse chemical scaffolds with minimal synthetic effort.

15.
Nucl Med Biol ; 128-129: 108877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38232579

RESUMEN

Brain pretargeted nuclear imaging for the diagnosis of various neurodegenerative diseases is a quickly developing field. The tetrazine ligation is currently the most explored approach to achieve this goal due to its remarkable properties. In this work, we evaluated the performance of F-537-Tetrazine, previously developed by Biogen, and N-(3-[18F]fluoro-5-(1,2,4,5-tetrazin-3-yl)benzyl)propan-1-amine, previously developed in our group, thereby allowing for the direct comparison of these two imaging probes. The evaluation included synthesis, radiolabeling and a comparison of the physicochemical properties of the compounds. Furthermore, their performance was evaluated by in vitro and in vivo pretargeting models. This study indicated that N-(3-[18F] fluoro-5-(1,2,4,5-tetrazin-3-yl)benzyl)propan-1-amine might be more suited for brain pretargeted imaging.


Asunto(s)
Aminas , Compuestos Heterocíclicos , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen
16.
Nucl Med Biol ; 132-133: 108905, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38555651

RESUMEN

DOTATATE is a somatostatin peptide analog used in the clinic to detect somatostatin receptors which are highly expressed on neuroendocrine tumors. Somatostatin receptors are found naturally in the intestines, pancreas, lungs, and brain (mainly cortex). In vivo measurement of the somatostatin receptors in the cortex has been challenging because available tracers cannot cross the blood-brain barrier (BBB) due to their intrinsic polarity. A peptide called melittin, a main component of honeybee venom, has been shown to disrupt plasma membranes and increase the permeability of biological membranes. In this study, we assessed the feasibility of using melittin to facilitate the passage of [64Cu]Cu-DOTATATE through the BBB and its binding to somatostatin receptors in the cortex. Evaluation included in vitro autoradiography on Long Evans rat brains to estimate the binding affinity of [64Cu]Cu-DOTATATE to the somatostatin receptors in the cortex and an in vivo evaluation of [64Cu]Cu-DOTATATE binding in NMRI mice after injection of melittin. This study found an in vitro Bmax = 89 ± 4 nM and KD = 4.5 ± 0.6 nM in the cortex, resulting in a theoretical binding potential (BP) calculated as Bmax/KD ≈ 20, which is believed suitable for in vivo brain PET imaging. However, the in vivo results showed no significant difference between the control and melittin injected mice, indicating that the honeybee venom failed to open the BBB. Additional experiments, potentially involving faster injection rates are required to verify that melittin can increase brain uptake of non-BBB permeable PET tracers. Furthermore, an evaluation of whether a venom with a narrow therapeutic range can be used for clinical purposes needs to be considered.


Asunto(s)
Barrera Hematoencefálica , Estudios de Factibilidad , Meliteno , Compuestos Organometálicos , Tomografía de Emisión de Positrones , Receptores de Somatostatina , Animales , Receptores de Somatostatina/metabolismo , Meliteno/química , Meliteno/metabolismo , Ratas , Tomografía de Emisión de Positrones/métodos , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Compuestos Organometálicos/farmacocinética , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/diagnóstico por imagen , Masculino , Ratones , Radioisótopos de Cobre , Octreótido/análogos & derivados
17.
Diagnostics (Basel) ; 14(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39335703

RESUMEN

The use of fibroblast activation protein inhibitors (FAPis) for positron emission tomography (PET) imaging in cancer has garnered significant interest in recent years, yielding promising results in preclinical and clinical settings. FAP is predominantly expressed in pathological conditions such as fibrosis and cancer, making it a compelling target. An optimized approach involves using FAPi homodimers as PET tracers, which enhance tumor uptake and retention, making them more effective candidates for therapy. Here, a UAMC-1110 inhibitor-based homodimer, DOTAGA-Glu(FAPi)2, was synthesized and radiolabeled with gallium-68, and its efficacy was evaluated in vivo for PET imaging in an endogenously FAP-expressing xenografted mouse model, U87MG. Notably, 45 min post-injection, the mean uptake of [68Ga]Ga-DOTAGA-Glu(FAPi)2 was 4.7 ± 0.5% ID/g in the tumor with low off-target accumulation. The ex vivo analysis of the FAP expression in the tumors confirmed the in vivo results. These findings highlight and confirm the tracer's potential for diagnostic imaging of cancer and as a theranostic companion.

18.
Front Pharmacol ; 14: 1140656, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841918

RESUMEN

Rationale: The psychedelic effects of the traditional Amazonian botanical decoction known as ayahuasca are often attributed to agonism at brain serotonin 5-HT2A receptors by N,N-dimethyltryptamine (DMT). To reduce first pass metabolism of oral DMT, ayahuasca preparations additionally contain reversible monoamine oxidase A (MAO-A) inhibitors, namely ß-carboline alkaloids such as harmine. However, there is lacking biochemical evidence to substantiate this pharmacokinetic potentiation of DMT in brain via systemic MAO-A inhibition. Objectives: We measured the pharmacokinetic profile of harmine and/or DMT in rat brain, and tested for pharmacodynamic effects on brain glucose metabolism and DMT occupancy at brain serotonin 5-HT2A receptors. Methods: We first measured brain concentrations of harmine and DMT after treatment with harmine and/or DMT at low sub-cutaneous doses (1 mg/kg each) or harmine plus DMT at moderate doses (3 mg/kg each). In the same groups of rats, we also measured ex vivo the effects of these treatments on the availability of serotonin 5-HT2A receptors in frontal cortex. Finally, we explored effects of DMT and/or harmine (1 mg/kg each) on brain glucose metabolism with [18F]FDG-PET. Results: Results confirmed that co-administration of harmine inhibited the formation of the DMT metabolite indole-3-acetic acid (3-IAA) in brain, while correspondingly increasing the cerebral availability of DMT. However, we were unable to detect any significant occupancy by DMT at 5-HT2A receptors measured ex vivo, despite brain DMT concentrations as high as 11.3 µM. We did not observe significant effects of low dose DMT and/or harmine on cerebral [18F]FDG-PET uptake. Conclusion: These preliminary results call for further experiments to establish the dose-dependent effects of harmine/DMT on serotonin receptor occupancy and cerebral metabolism.

19.
Eur J Med Chem ; 262: 115862, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37883899

RESUMEN

Small-molecular fibroblast activation protein inhibitor (FAPI)-based tracer have been shown to be promising Positron Emission Tomography (PET) 68Ga-labeled radiopharmaceuticals to image a variety of tumors including pancreatic, breast, and colorectal cancers, among others. In this study, we developed a novel 18F-labeled FAPI derivative. [18F]6 was labeled using a synthon approach based on the tetrazine ligation. It showed subnanomolar affinity for the FAP protein and a good selectivity profile against known off-target proteases. Small animal PET studies revealed high tumor uptake and good target-to-background ratios. [18F]6 was excreted via the liver. Overall, [18F]6 showed promising characteristics to be used as a PET tracer and could serve as a lead for further development of halogen-based theranostic FAPI radiopharmaceuticals.


Asunto(s)
Compuestos Heterocíclicos , Quinolinas , Animales , Transporte Biológico , Endopeptidasas , Fibroblastos , Fluorodesoxiglucosa F18 , Radioisótopos de Galio , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Radiofármacos/farmacología , Radioisótopos de Flúor
20.
J Cereb Blood Flow Metab ; 43(7): 1153-1165, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36809165

RESUMEN

The glymphatic system is a brain-wide waste drainage system that promotes cerebrospinal fluid circulation through the brain to remove waste metabolites. Currently, the most common methods for assessing glymphatic function are ex vivo fluorescence microscopy of brain slices, macroscopic cortical imaging, and MRI. While all these methods have been crucial for expanding our understanding of the glymphatic system, new techniques are required to overcome their specific drawbacks. Here, we evaluate SPECT/CT imaging as a tool to assess glymphatic function in different anesthesia-induced brain states using two radiolabeled tracers, [111In]-DTPA and [99mTc]-NanoScan. Using SPECT, we confirmed the existence of brain state-dependent differences in glymphatic flow and we show brain state-dependent differences of CSF flow kinetics and CSF egress to the lymph nodes. We compare SPECT and MRI for imaging glymphatic flow and find that the two imaging modalities show the same overall pattern of CSF flow, but that SPECT was specific across a greater range of tracer concentrations than MRI. Overall, we find that SPECT imaging is a promising tool for imaging the glymphatic system, and that qualities such as high sensitivity and the variety of available tracers make SPECT imaging a good alternative for glymphatic research.


Asunto(s)
Sistema Glinfático , Ratas , Animales , Encéfalo/irrigación sanguínea , Imagen por Resonancia Magnética/métodos , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA