Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834064

RESUMEN

Coiled-coil domains (CCDs) play key roles in regulating both healthy cellular processes and the pathogenesis of various diseases by controlling protein self-association and protein-protein interactions. Here, we probe the mechanism of oligomerization of a peptide representing the CCD of the STIL protein, a tetrameric multi-domain protein that is over-expressed in several cancers and associated with metastatic spread. STIL tetramerization is mediated both by an intrinsically disordered domain (STIL400-700) and a structured CCD (STIL CCD718-749). Disrupting STIL oligomerization via the CCD inhibits its activity in vivo. We describe a comprehensive biophysical and structural characterization of the concentration-dependent oligomerization of STIL CCD peptide. We combine analytical ultracentrifugation, fluorescence and circular dichroism spectroscopy to probe the STIL CCD peptide assembly in solution and determine dissociation constants of both the dimerization, (KD = 8 ± 2 µM) and tetramerization (KD = 68 ± 2 µM) of the WT STIL CCD peptide. The higher-order oligomers result in increased thermal stability and cooperativity of association. We suggest that this complex oligomerization mechanism regulates the activated levels of STIL in the cell and during centriole duplication. In addition, we present X-ray crystal structures for the CCD containing destabilising (L736E) and stabilising (Q729L) mutations, which reveal dimeric and tetrameric antiparallel coiled-coil structures, respectively. Overall, this study offers a basis for understanding the structural molecular biology of the STIL protein, and how it might be targeted to discover anti-cancer reagents.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Fenómenos Biofísicos , Dicroismo Circular , Dimerización , Péptidos/química , Dominios Proteicos , Proteínas , Humanos , Péptidos y Proteínas de Señalización Intracelular/química
2.
Front Chem ; 8: 405, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32509731

RESUMEN

Cyclic peptide-peptoid hybrids possess improved stability and selectivity over linear peptides and are thus better drug candidates. However, their synthesis is far from trivial and is usually difficult to automate. Here we describe a new rapid and efficient approach for the synthesis of click-based cyclic peptide-peptoid hybrids. Our methodology is based on a combination between easily synthesized building blocks, automated microwave assisted solid phase synthesis and bioorthogonal click cyclization. We proved the concept of this method using the INS peptide, which we have previously shown to activate the HIV-1 integrase enzyme. This strategy enabled the rapid synthesis and biophysical evaluation of a library of cyclic peptide-peptoid hybrids derived from HIV-1 integrase in high yield and purity. The new cyclic hybrids showed improved biological activity and were significantly more stable than the original linear INS peptide.

3.
Sci Rep ; 6: 24296, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27075531

RESUMEN

The STIL protein is essential for centriole replication and for the non-templated, de novo centriole biogenesis that is required for mammalian embryogenesis. Here we performed quantitative biophysical and structural analysis of the central short coiled coil domain (CCD) of STIL that is critical for its function. Using biophysical, biochemical and cell biology approaches, we identified the specific residues in the CCD that mediate the oligomerization, centrosomal localization and protein interactions of STIL. We characterized the structural properties of the coiled coil peptide using circular dichroism spectroscopy and size exclusion chromatography. We identified two regions in this domain, containing eight hydrophobic residues, which mediate the coiled coil oligomerization. Mutations in these residues destabilized the coiled coil thermodynamically but in most cases did not affect its secondary structure. Reconstituting mouse embryonic fibroblasts lacking endogenous Stil, we show that STIL oligomerization mediated by these residues is not only important for the centrosomal functions of STIL during the canonical duplication process but also for de-novo formation of centrosomes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Centrosoma/metabolismo , Multimerización de Proteína , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Animales , Fenómenos Biofísicos , Células Cultivadas , Cromatografía en Gel , Dicroismo Circular , Humanos , Ratones , Conformación Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Proteína 1 de la Leucemia Linfocítica T Aguda
4.
Chem Sci ; 7(7): 4140-4147, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30155058

RESUMEN

Binding of metal ions is an important regulatory mechanism in proteins. Specifically, Zn2+ binding to disordered regions commonly induces a disorder to order transition and gain of structure or oligomerization. Here we show that simultaneous binding of Zn2+ ions has different effects on structured and disordered domains in the same multidomain protein. The centrosomal STIL protein bound Zn2+ ions via both its structured N-terminal domain (NTD) and disordered central region (IDR). Zn2+ binding induced structural rearrangement of the structured NTD but promoted oligomerization of the IDR. We suggest that by binding Zn2+ STIL acquires a different conformation, which allows its oligomerization and induces its activity. Sequence alignment of the oligomerization region revealed a new suggested motif, SxKxS/SxHxS/SxLxS, which may participate in STIL oligomerization. Binding of the same metal ion through a disordered and a structured domain in the same protein is a property that may have implications in regulating the protein activity. By doing so, the protein achieves two parallel outcomes: structural changes and oligomerization that can take place together. Our results describe a new important role of the delicate interplay between structure and intrinsic disorder in proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA