Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Molecules ; 28(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37570594

RESUMEN

This review describes the various innovative approaches implemented for naringin extraction as well as the recent developments in the field. Naringin was assessed in terms of its structure, chemical composition, and potential food sources. How naringin works pharmacologically was discussed, including its potential as an anti-diabetic, anti-inflammatory, and hepatoprotective substance. Citrus flavonoids are crucial herbal additives that have a huge spectrum of organic activities. Naringin is a nutritional flavanone glycoside that has been shown to be effective in the treatment of a few chronic disorders associated with ageing. Citrus fruits contain a common flavone glycoside that has specific pharmacological and biological properties. Naringin, a flavone glycoside with a range of intriguing characteristics, is abundant in citrus fruits. Naringin has been shown to have a variety of biological, medicinal, and pharmacological effects. Naringin is hydrolyzed into rhamnose and prunin by the naringinase, which also possesses l-rhamnosidase activity. D-glucosidase subsequently catalyzes the hydrolysis of prunin into glucose and naringenin. Naringin is known for having anti-inflammatory, antioxidant, and tumor-fighting effects. Numerous test animals and cell lines have been used to correlate naringin exposure to asthma, hyperlipidemia, diabetes, cancer, hyperthyroidism, and osteoporosis. This study focused on the many documented actions of naringin in in-vitro and in-vivo experimental and preclinical investigations, as well as its prospective therapeutic advantages, utilizing the information that is presently accessible in the literature. In addition to its pharmacokinetic characteristics, naringin's structure, distribution, different extraction methods, and potential use in the cosmetic, food, pharmaceutical, and animal feed sectors were discussed.


Asunto(s)
Flavanonas , Flavonas , Animales , Flavanonas/química , Glicósidos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
2.
Molecules ; 28(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687076

RESUMEN

Sappan wood (Caesalpinia sappan) is a tropical hardwood tree found in Southeast Asia. Sappan wood contains a water-soluble compound, which imparts a red color named brazilin. Sappan wood is utilized to produce dye for fabric and coloring agents for food and beverages, such as wine and meat. As a valuable medicinal plant, the tree is also known for its antioxidant, anti-inflammatory, and anticancer properties. It has been observed that sappan wood contains various bioactive compounds, including brazilin, brazilein, sappan chalcone, and protosappanin A. It has also been discovered that these substances have various health advantages; they lower inflammation, enhance blood circulation, and are anti-oxidative in nature. Sappan wood has been used as a medicine to address a range of illnesses, such as gastrointestinal problems, respiratory infections, and skin conditions. Studies have also suggested that sappan wood may have anticarcinogenic potential as it possesses cytotoxic activity against cancer cells. Based on this, the present review emphasized the different medicinal properties, the role of phytochemicals, their health benefits, and several food and nonfood applications of sappan wood. Overall, sappan wood has demonstrated promising medicinal properties and is an important resource in traditional medicine. The present review has explored the potential role of sappan wood as an essential source of bioactive compounds for drug development.


Asunto(s)
Caesalpinia , Chalcona , Antioxidantes/farmacología , Bebidas , Colorantes , Carne
3.
J Food Sci Technol ; 60(6): 1803-1813, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37187993

RESUMEN

The present study was conducted out to develop nutritionally enriched noodles by supplementing wheat flour with mushroom and chickpea starch at different concentrations and its effect on physico-chemical, bioactive, cooking, microbial and sensory properties, morphological and textural properties has been investigated. The prepared noodles contained high levels of protein, and low levels of carbohydrate, energy with the incorporation of mushroom flour and chickpea starch concentration. The lightness (L*) (71.79-53.84) decreased and yellowness (b*) (19.33-31.36) and redness (a*) (1.91-5.35) increased with the incorporation of mushroom flour and chickpea starch. The optimum cooking time decreased while as the water absorption capacity and cooking loss increased with increase in mushroom flour and chickpea starch concentration. The microstructure study and textural properties depicted the clear picture of protein network, with smooth outer surface, and the decrease in hardness with increased concentration of mushroom flour and chickpea starch. XRD and DSC results revealed that the prepared noodles contained more complete crystallites and high fraction of crystalline region and the linear increase in the gelatinization temperature with increase in composite flour concentration. The microbial analysis of noodles showed the decrease in microbial growth with the incorporation of composite flour.

4.
Food Sci Biotechnol ; 33(7): 1541-1557, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38623424

RESUMEN

There are a number of cutting-edge techniques implemented in the germination process, including high pressure processing, ultrasonic, ultraviolet, light, non-thermal plasma, magnetic field, microwave radiation, electrolyzed oxidizing water, and plasma activated water. The influence of these technological advances on seed germination procedure is addressed in this review. The use of these technologies has several benefits, including the enhancement of plant growth rate and the modulation of bioactive chemicals like ABA, protein, and peroxidase concentrations, as well as the suppression of microbial development. Microgreens' positive health effects, such as their antioxidant, anticancer, antiproliferative/pro-oxidant, anti-obesity, and anti-inflammatory properties are extensively reviewed. The phytochemical and bioactive components of microgreens were investigated, including the concentrations of vitamin K, vitamin C, vitamin E, micro and macro nutrients, pro-vitamin A, polyphenols, and glucosinolates. Furthermore, the potential commercial uses of microgreens, as well as the current market transformation and prospects for the future are explored.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38462564

RESUMEN

The choice of an appropriate packaging materials enhances the shelf life and improves quality of food during transportation, storage, and distribution. Development and innovations in food packaging systems have become essential in the food industry. Most widely used packaging materials are non-biodegradable plastics and are harmful to environment and human health. Thus, food industry is replacing non-biodegradable plastics with biodegradable plastics to reduce environmental pollution, health hazards, and food waste. Edible packaging may reduce food waste and keep perishables fresh. This review article compares edible packaging materials to synthetic ones and discusses their pollution-reducing effects. The several types of food packaging discussed in the review include those produced from polysaccharides, proteins, lipids, and composite films. The various characteristics of edible packaging are reviewed, including its barrier qualities, carrier properties, mechanical capabilities, and edibility. The carrier properties describe the capacity to transport and manage the release of active substances, and the edibility indicates acceptance of these items by the customers. Plasticizers, antimicrobials, antioxidants, and emulsifiers were included in the edible packaging to enhance the characteristics of the film. The development and implementation of edible packaging on food products from the laboratory to large-scale industrial levels, as well as their potential industrial applications in the dairy, meat, confectionary, poultry, fish, fruit, and vegetable processing sectors are addressed.

6.
Heliyon ; 10(2): e25046, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312640

RESUMEN

Phalsa is a tropical and subtropical fruit that is high in nutritional value and is primarily cultivated for its fruit. As, Phalsa fruit contain high number of vitamins (A and C), minerals (calcium, phosphorus, and iron), and fibre while being low in calories and fat. The fruit and seed of Phalsa contain 18 amino acids, the majority of which are aspartic acid, glutamic acid, and leucine. Based on in vivo and in vitro studies phalsa plant possess high antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic properties. However, antioxidant properties are found in the form of vitamin C, total phenolic, anthocyanin, flavonoid, and tannin. The phalsa plant's fruits and leaves have substantial anticancer action against cancer cell lines. Because of the presence of a broad range of physiologically active chemicals, investigations on phalsa plants revealed that some plant parts have radioprotective qualities. The anti-glycosidase and anti-amylase activity of aqueous fresh fruit extract was shown to be substantial. The phalsa plant contains an abundance of biologically active chemicals, allowing it to control microorganisms through a variety of processes. Phalsa methanolic leaf extract was revealed to have antimalarial and antiemetic effects. The hot and cold polysaccharide fractions extracted from the phalsa plant have potent hepatoprotective and therapeutic properties. Therefore, this review is based on the nutritional, bioactive, phytochemicals, and potential pharmacological uses of phalsa. The potential health benefits and economic potential of the phalsa berry's phytochemicals are promising areas for further study.

7.
Food Sci Biotechnol ; 33(7): 1529-1540, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38623437

RESUMEN

Microbial cellulose is a fermented form of very pure cellulose with a fibrous structure. The media rich in glucose or other carbon sources are fermented by bacteria to produce microbial cellulose. The bacteria use the carbon to produce cellulose, which grows as a dense, gel-like mat on the surface of the medium. The product was then collected, cleaned, and reused in various ways. The properties of microbial cellulose, such as water holding capacity, gas permeability, and ability to form a flexible, transparent film make it intriguing for food applications. Non-digestible microbial cellulose has been shown to improve digestive health and may have further advantages. It is also very absorbent, making it a great option for use in wound dressings. The review discusses the generation of microbial cellulose and several potential applications of microbial cellulose in fields including pharmacy, biology, materials research, and the food industry.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38710849

RESUMEN

Microalgae (MA) are the most abundant seaweeds with high nutritional properties. They are accepted as potential biocatalysts for the bioremediation of wastewater. They are widely used in food, feed, and biofuel industries and can potentially be food for future generations. MA-based purification of wastewater technology could be a universal alternative solution for the recovery of resources from wastewater for low-cost biomass feedstock for industry. They provide a wide range of functional components, viz. omega-3 fatty acids, along with a plenteous number of pigments such as ß-carotene, astaxanthin, lutein, phycocyanin, and chlorophyll, which are used extensively as food additives and nutraceuticals. Further, proteins, lipids, vitamins, and carbohydrates are described as nutritional characteristics in MA. They are investigated as single-cell protein, thickening/stabilizing agents, and pigment sources in the food industry. The review emphasizes the production and extraction of nutritional and functional components of algal biomass and the role of microalgal polysaccharides in digestion and nutritional absorption in the gastrointestinal tract. Further, the use of MA in the food industry was also investigated along with their potential therapeutic applications.

9.
Plants (Basel) ; 13(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38475421

RESUMEN

Aonla, commonly known as Indian gooseberry (Phyllanthus emblica), is a plant native to India with various therapeutic and dietary benefits. This review covers the taxonomical, morphological, and species-level classifications of aonla fruit, including its flower biology, maturation, harvesting, and yield metrics. It also discusses the nutritional, physico-chemical, and phytochemical characteristics and the total antioxidant and antimicrobial activities and mineral compositions of several aonla fruit cultivars. Additionally, the health benefits of aonla are reviewed, including its analgesic, antipyretic, antioxidative, anti-inflammatory, anti-aging, ulcerogenic, chemo-protective, neuroprotective, free radical scavenging, hypoglycaemic, and immunogenic properties, which make it beneficial in the treatment and prevention of various illnesses. Further various forms of fruit extract are also considered to be beneficial for the improvement of plant and animal health. Overall, aonla is a valuable fruit with significant potential for use in improving human health.

10.
Circ Econ Sustain ; : 1-24, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36620426

RESUMEN

Chronic hunger and malnutrition will eventually result from the population's rapid growth. It is unlikely to succeed in tackling the rising challenges of delivering sustainable food for all people unless high attention is paid on the function of food processing to ensure the supply of stable food. It is impossible to overstate the importance of developing food processing and preservation technologies that can reduce food losses and wastage during surplus seasons. Therefore, sustainable food systems must be developed to provide healthy diets without damaging our world and its resources. The goal is to use various perspectives to confirm why food processing is crucial to future food supply. It is important to show the appropriate utilization of sustainability factors and effect assessments to construct for feeding the globe while staying within planetary limits. There has never been a better time to assure a plentiful food supply to feed the people than right now, when the population is expanding at a worrying rate. The sustainable food project seeks to move the food systems in a long-term, more equitable direction. Food processing, or the conversion of raw materials into functional, edible, and consumer acceptable food, is a critical link in the food value chain between consumption and production. This review looked at various existing and emerging food processing followed by preservation techniques. Food systems must also attempt to reduce food waste and losses, as well as the current and future impacts on the environment and society, to be sustainable.

11.
Heliyon ; 9(6): e16804, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37332944

RESUMEN

Due to growing consumer interest in fitness and wellbeing, foods and beverages with therapeutic and functional qualities are in higher demand. In addition to being significant staple crops and major providers of nutrition and energy, cereals are rich in bioactive phytochemicals with health benefits. Cereal grains offer a lot of promise for processing into functional beverages since these include a wide variety of bioactive phytochemicals such as phenolic compounds, carotenoids, dietary fibres, phytosterols, tocols, gamma-oryzanol, and phytic acid. Despite the fact that a wide variety of beverages made from cereal grains are produced globally, they have received very little technological and scientific attention. The beverages confer replacements for milk made from cereal grains, roasted cereal grain teas and fermented non-alcoholic cereal grain drinks. This review emphasizes on the three primary kinds of functional beverages made from cereal grains. Further, the potential applications and directions for the future related to these beverages are discussed with elaborated processing methods, health benefits and product attributes. Cereal grain-based beverages may represent a promising new class of healthy functional beverages in our daily lives as the food industry gets more diverse.

12.
Int J Biol Macromol ; 213: 987-1006, 2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35705126

RESUMEN

Hydrogels are ideal for various food applications because of their softness, elasticity, absorbent nature, flexibility, and hygroscopic nature. Polysaccharide hydrogels are particularly suitable because of the hydrophilic nature, their food compatibility, and their non-immunogenic character. Such hydrogels offer a wide range of successful applications such as food preservation, pharmaceuticals, agriculture, and food packaging. Additionally, polysaccharide hydrogels have proven to play a significant role in the formulation of food flavor carrier systems, thus diversifying the horizons of newer developments in food processing sector. Polysaccharide hydrogels are comprised of natural polymers such as alginate, chitosan, starch, pectin and hyaluronic acid when crosslinked physically or chemically. Hydrogels with interchangeable, antimicrobial and barrier properties are referred to as smart hydrogels. This review brings together the recent and relevant polysaccharide research in these polysaccharide hydrogel applications areas and seeks to point the way forward for future research and interventions. Applications in carrying out the process of flavor carrier system directly through their incorporation in food matrices, broadening the domain for food application innovations. The classification and important features of polysaccharide-based hydrogels in food processing are the topics of the current review study.


Asunto(s)
Quitosano , Hidrogeles , Alginatos/química , Quitosano/química , Ácido Hialurónico , Hidrogeles/química , Polisacáridos/química
13.
Front Nutr ; 9: 987674, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185660

RESUMEN

Many studies have demonstrated the use of synthetic preservatives and chemical additives in food is causing poisoning, cancer, and other degenerative disorders. New solutions for food preservation with quality maintenance are currently emerging. As a result, public concern has grown, as they desire to eat healthier products that use natural preservatives and compounds rather than synthetic ones. Clove is a highly prized spice used as a food preservative and for a variety of therapeutic reasons. Clove essential oil and its principal active component, eugenol, indicate antibacterial and antifungal action, aromaticity, and safety as promising and valuable antiseptics in the food sector. Clove essential oil and eugenol are found to have strong inhibition effects on a variety of food-source bacteria, and the mechanisms are linked to lowering migration and adhesion, as well as blocking the creation of biofilm and various virulence factors. This review emphasizes the importance of CEO (clove essential oil) in the food industry and how it can be explored with edible coatings to deliver its functional properties in food preservation.

14.
Front Nutr ; 9: 908570, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774545

RESUMEN

In this investigation, the effect of different drying techniques, such as freeze-drying and cabinet drying, with two different carrier agents, such as maltodextrin (MD) and soy protein isolate (SPI), at different levels (10, 15, and 20%) on button mushrooms has been revealed. The results showed that the button mushroom powders (BMPs) formulated with SPI as a carrier agent had significantly higher powder yield, hygroscopicity, L *, a *, and b * values, whereas BMP formulated with MD had significantly higher water activity, solubility index, tapped density, bulk density, and flowability. The highest retention of bioactive compounds was reported in freeze-dried mushroom powder compared to cabinet dried powder using SPI as a carrier agent. Fourier transform infrared (FTIR) analysis confirmed that certain additional peaks were produced in the mushroom button powder-containing SPI (1,035-3,271 cm-1) and MD (930-3,220 cm-1). Thus, the results revealed that SPI showed promising results for formulating the BMP using the freeze-drying technique.

15.
Front Nutr ; 9: 999752, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532555

RESUMEN

Naturally occurring phytochemicals with promising biological properties are quercetin and its derivatives. Quercetin has been thoroughly studied for its antidiabetic, antibacterial, anti-inflammatory, anti-Alzheimer's, anti-arthritic, antioxidant, cardiovascular, and wound-healing properties. Anticancer activity of quercetin against cancer cell lines has also recently been revealed. The majority of the Western diet contains quercetin and its derivatives, therefore consuming them as part of a meal or as a food supplement may be sufficient for people to take advantage of their preventive effects. Bioavailability-based drug-delivery systems of quercetin have been heavily studied. Fruits, seeds, vegetables, bracken fern, coffee, tea, and other plants all contain quercetin, as do natural colors. One naturally occurring antioxidant is quercetin, whose anticancer effects have been discussed in detail. It has several properties that could make it an effective anti-cancer agent. Numerous researches have shown that quercetin plays a substantial part in the suppression of cancer cells in the breast, colon, prostate, ovary, endometrial, and lung tumors. The current study includes a concise explanation of quercetin's action mechanism and potential health applications.

16.
Int J Biol Macromol ; 192: 197-209, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34624381

RESUMEN

Nanotechnology has proven as progressive technology that enables to contribute, develop several effective and sustainable changes in food products. Incorporating nanomaterials like TiO2, SiO2, Halloysite nano clay, Copper sulfide, Bentonite nano clay, in carrageenan to develop innovative packaging materials with augmented mechanical and antimicrobial properties along with moisture and gas barrier properties that can produce safe and healthy foods. Intervention of carrageenan-based bio-nanocomposites as food packaging constituents has shown promising results in increasing the shelf stability and food quality by arresting the microbial growth. Nanomaterials can be incorporated within the carrageenan for developing active packaging systems for continuous protection of food products under different storage environments from farm to the fork to ensure quality and safety of foods. Carrageenan based bio nanocomposite packaging materials can be helpful to reduce the environmental concerns due to their high biodegradability index. This review gives insight about the current trends in the applications of carrageenan-based bio nanocomposites for different food packaging applications.


Asunto(s)
Materiales Biocompatibles/química , Biopolímeros/química , Carragenina/química , Embalaje de Alimentos , Nanocompuestos/química , Agar/química , Estructura Molecular , Nanotecnología , Titanio/química
17.
Int J Biol Macromol ; 165(Pt A): 554-567, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32991897

RESUMEN

Nowadays, the consumers' understanding of the relation between diet and health has bought a profound change in their dietary pattern and lifestyle transformation. They aspire more to natural and health-full food products with desired quality and functionality. The emergence of this consciousness among consumers has become one of the driving factors for designing food products that can meet both their specific nutritional needs and health benefits. Known as the skeleton structure of food, hydrocolloids from food biopolymers have thus received much attention in recent years from both scientific communities as well as from consumers and food sectors. They play a crucial role in the tribology, rheology and sensory perceptions of food and pharmaceutical formulations when been utilized as viscosity enhancers, gelling agents, emulsifiers, coating, and stabilizing agents. Further, the implication of this multifarious class of biopolymers has increased tremendously because of their remarkable therapeutic potential. Based on prevailing literature hydrocolloids offer significant opportunities in tailoring the nutritional value along with providing health benefits via controlling gastric emptying and ileal brake mechanism, lowering plasma cholesterol levels, glycemic response, postprandial glucose and insulin levels, and prevention of colon cancer, and improving the bioavailability of specific bioactive compounds and drugs through their controlled and targeted delivery along the gastrointestinal tract. This review provides a comprehensive discussion on the functionality and nutraceutical potential of food colloids as a functional food ingredient with a specific focus on their application as controlled release excipients for nutraceuticals or drug release systems.


Asunto(s)
Suplementos Dietéticos , Sistemas de Liberación de Medicamentos , Alimentos Funcionales , Disponibilidad Biológica , Coloides , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA