Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 38(3-4): 189-204, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38479839

RESUMEN

Chromatin-based epigenetic memory relies on the accurate distribution of parental histone H3-H4 tetramers to newly replicated DNA strands. Mcm2, a subunit of the replicative helicase, and Dpb3/4, subunits of DNA polymerase ε, govern parental histone H3-H4 deposition to the lagging and leading strands, respectively. However, their contribution to epigenetic inheritance remains controversial. Here, using fission yeast heterochromatin inheritance systems that eliminate interference from initiation pathways, we show that a Mcm2 histone binding mutation severely disrupts heterochromatin inheritance, while mutations in Dpb3/4 cause only moderate defects. Surprisingly, simultaneous mutations of Mcm2 and Dpb3/4 stabilize heterochromatin inheritance. eSPAN (enrichment and sequencing of protein-associated nascent DNA) analyses confirmed the conservation of Mcm2 and Dpb3/4 functions in parental histone H3-H4 segregation, with their combined absence showing a more symmetric distribution of parental histone H3-H4 than either single mutation alone. Furthermore, the FACT histone chaperone regulates parental histone transfer to both strands and collaborates with Mcm2 and Dpb3/4 to maintain parental histone H3-H4 density and faithful heterochromatin inheritance. These results underscore the importance of both symmetric distribution of parental histones and their density at daughter strands for epigenetic inheritance and unveil distinctive properties of parental histone chaperones during DNA replication.


Asunto(s)
Histonas , Schizosaccharomyces , Histonas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Heterocromatina/genética , Replicación del ADN/genética , ADN/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Epigénesis Genética
2.
Genes Dev ; 33(1-2): 116-126, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30573453

RESUMEN

Heterochromatin is a highly condensed form of chromatin that silences gene transcription. Although high levels of transcriptional activities disrupt heterochromatin, transcription of repetitive DNA elements and subsequent processing of the transcripts by the RNAi machinery are required for heterochromatin assembly. In fission yeast, a JmjC domain protein, Epe1, promotes transcription of DNA repeats to facilitate heterochromatin formation, but overexpression of Epe1 leads to heterochromatin defects. However, the molecular function of Epe1 is not well understood. By screening the fission yeast deletion library, we found that heterochromatin defects associated with Epe1 overexpression are alleviated by mutations of the SAGA histone acetyltransferase complex. Overexpressed Epe1 associates with SAGA and recruits SAGA to heterochromatin regions, which leads to increased histone acetylation, transcription of repeats, and the disruption of heterochromatin. At its normal expression levels, Epe1 also associates with SAGA, albeit weakly. Such interaction regulates histone acetylation levels at heterochromatin and promotes transcription of repeats for heterochromatin assembly. Our results also suggest that increases of certain chromatin protein levels, which frequently occur in cancer cells, might strengthen relatively weak interactions to affect the epigenetic landscape.


Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Heterocromatina/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Acetilación , Ensamble y Desensamble de Cromatina/genética , Inestabilidad Cromosómica/genética , Eliminación de Gen , Heterocromatina/metabolismo , Heterocromatina/patología , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Repeticiones de Microsatélite/genética , Transporte de Proteínas
3.
Nucleic Acids Res ; 52(5): 2372-2388, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38214234

RESUMEN

Pediatric high-grade gliomas (pHGG) are devastating and incurable brain tumors with recurrent mutations in histone H3.3. These mutations promote oncogenesis by dysregulating gene expression through alterations of histone modifications. We identify aberrant DNA repair as an independent mechanism, which fosters genome instability in H3.3 mutant pHGG, and opens new therapeutic options. The two most frequent H3.3 mutations in pHGG, K27M and G34R, drive aberrant repair of replication-associated damage by non-homologous end joining (NHEJ). Aberrant NHEJ is mediated by the DNA repair enzyme polynucleotide kinase 3'-phosphatase (PNKP), which shows increased association with mutant H3.3 at damaged replication forks. PNKP sustains the proliferation of cells bearing H3.3 mutations, thus conferring a molecular vulnerability, specific to mutant cells, with potential for therapeutic targeting.


Asunto(s)
Neoplasias Encefálicas , Glioma , Histonas , Niño , Humanos , Neoplasias Encefálicas/patología , Reparación del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Glioma/patología , Histonas/genética , Histonas/metabolismo , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
4.
PLoS Genet ; 18(2): e1010049, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35171902

RESUMEN

The epigenetic landscape of a cell frequently changes in response to fluctuations in nutrient levels, but the mechanistic link is not well understood. In fission yeast, the JmjC domain protein Epe1 is critical for maintaining the heterochromatin landscape. While loss of Epe1 results in heterochromatin expansion, overexpression of Epe1 leads to defective heterochromatin. Through a genetic screen, we found that mutations in genes of the cAMP signaling pathway suppress the heterochromatin defects associated with Epe1 overexpression. We further demonstrated that the activation of Pka1, the downstream effector of cAMP signaling, is required for the efficient translation of epe1+ mRNA to maintain Epe1 overexpression. Moreover, inactivation of the cAMP-signaling pathway, either through genetic mutations or glucose deprivation, leads to the reduction of endogenous Epe1 and corresponding heterochromatin changes. These results reveal the mechanism by which the cAMP signaling pathway regulates heterochromatin landscape in fission yeast.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Proteínas Nucleares/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal/genética
5.
Yeast ; 41(1-2): 19-34, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38041528

RESUMEN

Genetic targeting (e.g., gene knockout and tagging) based on polymerase chain reaction (PCR) is a simple yet powerful approach for studying gene functions. Although originally developed in classic budding and fission yeast models, the same principle applies to other eukaryotic systems with efficient homologous recombination. One-step PCR-based genetic targeting is conventionally used but the sizes of the homologous arms that it generates for recombination-mediated genetic targeting are usually limited. Alternatively, gene targeting can also be performed via fusion PCR, which can create homologous arms that are orders of magnitude larger, therefore substantially increasing the efficiency of recombination-mediated genetic targeting. Here, we present GetPrimers (https://www.evomicslab.org/app/getprimers/), a generalized computational framework and web tool to assist automatic targeting and verification primer design for both one-step PCR-based and fusion PCR-based genetic targeting experiments. Moreover, GetPrimers by design runs for any given genetic background of any species with full genome scalability. Therefore, GetPrimers is capable of empowering high-throughput functional genomic assays at multipopulation and multispecies levels. Comprehensive experimental validations have been performed for targeting and verification primers designed by GetPrimers across multiple organism systems and experimental setups. We anticipate GetPrimers to become a highly useful and popular tool to facilitate easy and standardized gene modification across multiple systems.


Asunto(s)
Marcación de Gen , Schizosaccharomyces , Recombinación Homóloga , Técnicas de Inactivación de Genes , Secuencia de Bases , Schizosaccharomyces/genética , Reacción en Cadena de la Polimerasa
6.
Clin Lab ; 70(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345985

RESUMEN

BACKGROUND: Seoul virus (SEOV) is a significant causative pathogen of hemorrhagic fever with renal syndrome (HFRS). Accurate discrimination of SEOV infection from other viral or bacterial infections holds vital clinical importance. METHODS: Our study utilized quantitative real-time PCR (qRT-PCR), metagenomic next-generation sequencing (mNGS), and immunological assays to identify the pathogen causing HFRS. RESULTS: For the case, mNGS identified SEOV and suspected host or environmental microorganisms at 5 days from symptom onset. qRT-PCR detected SEOV between 5 to 8 days from symptom onset. Anti-hantavirus IgM antibodies reached positive criteria at 7 days and IgG antibodies at 9 days from symptom onset. CONCLUSIONS: qRT-PCR, mNGS, and immunological assays each have merits and drawbacks. Optimal selection depends on laboratory conditions and clinical requirements.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Virus Seoul , Humanos , Virus Seoul/genética , Fiebre Hemorrágica con Síndrome Renal/diagnóstico , Anticuerpos Antivirales , Inmunoglobulina G
7.
Artículo en Inglés | MEDLINE | ID: mdl-38909990

RESUMEN

BACKGROUND: This study was designed to assess stress levels and related factors during the coronavirus disease 2019 (COVID-19) epidemic among individuals in centralized quarantine camps in Wenzhou, China. METHODS: The survey was conducted using a questionnaire. The questionnaire included questions on sociodemographic characteristics, life events related to the COVID-19 and stressful situations, as well as Perceived Stress Scale-14. Participants included close contacts of patients with COVID-19 or at-risk individuals in quarantine camps. Multivariate logistic regression was used to analyze different factors affecting perceived stress. RESULTS: The prevalence of high stress among quarantine camp participants was 37.45%. Of the 881 respondents, 51.99% were concerned about the difficulty of controlling the epidemic, 46.20% were concerned about the health of themselves and their family members and 39.61% were concerned about not being able to leave their homes. Multivariate logistic regression analysis revealed statistically significant differences in the prevalence of stress among different groups for certain variables, including occupation, education level and knowledge of COVID-19 (all P < 0.05). Our study found that at-risk individuals and close contacts experienced high levels of stress in quarantine camps during the COVID-19 pandemic. CONCLUSIONS: These findings suggest that centralized quarantine policies should be adapted and optimized to minimize negative psychological effects on quarantined individuals.

8.
Pestic Biochem Physiol ; 202: 105910, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879293

RESUMEN

The extraordinary adaptability and dispersal abilities have allowed Hyphantria cunea to expand its range, posing a great threat to urban landscapes and natural ecosystems. Searching for safe, efficient, and low-cost control methods may provide new strategies for pest management in H. cunea spread areas. In this study, based on the attraction of insects by preferred hosts, it was found that the response rates of virgin H. cunea female adults to Salix matsudana, Juglans mandshurica and Ulmus pumila were 89.17%, 97.92% and 93.98%, respectively. It was further found that this significant preference was mainly related to the volatiles m-xylene, o-xylene, dodecane and tetradecane found in the three species. Even though all four compounds at 10 µL/mL and 100 µL/mL had significant attractive effects on the virgin H. cunea female adults, m-xylene and dodecane at 100 µL/mL elicited significant EAG responses and tending behaviors by stimulating the olfactory receptor neurons (ORN A) of females, with response rates of 83.13% and 84.17%, while also having significant attractive effects on virgin male adults with rates of 65.74% and 67.51%. Therefore, both m-xylene and dodecane which at concentrations of 100 µL/mL had strong attractions to adults, could be used as the first choice of attractants for both sexes of H. cunea. This has important practical significance in reducing the frequency of H. cunea generations, limiting their population, controlling their spread range, and improving the efficiency of pest management in epidemic areas.


Asunto(s)
Compuestos Orgánicos Volátiles , Animales , Femenino , Masculino , Compuestos Orgánicos Volátiles/farmacología , Juglans
9.
Biol Res ; 56(1): 52, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789455

RESUMEN

BACKGROUND: Ischemic stroke is a severe type of stroke with high disability and mortality rates. In recent years, microglial exosome-derived miRNAs have been shown to be promising candidates for the treatment of ischemic brain injury and exert neuroprotective effects. Mechanisms underlying miRNA dysregulation in ischemic stroke are still being explored. Here, we aimed to verify whether miRNAs derived from exosomes exert effects on functional recovery. METHODS: MiR-212-5p agomir was employed to upregulate miR-212-5p expression in a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) as well as an oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. Western blot analysis, qRT-PCR and immunofluorescence staining and other methods were applied to explore the underlying mechanisms of action of miR-212-5p. RESULTS: The results of our study found that intervention with miR-212-5p agomir effectively decreased infarct volume and restored motor function in MCAO/R rats. Mechanistically, miR-212-5p agomir significantly reduced the expression of PlexinA2 (PLXNA2). Additionally, the results obtained in vitro were similar to those achieved in vivo. CONCLUSION: In conclusion, the present study indicated that PLXNA2 may be a target gene of miR-212-5p, and miR-212-5p has great potential as a target for the treatment and diagnosis of ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , MicroARNs , Daño por Reperfusión , Ratas , Animales , MicroARNs/genética , Microglía , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/metabolismo , Neuroprotección , Daño por Reperfusión/genética , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/metabolismo , Apoptosis
10.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37511208

RESUMEN

The high-pathogenicity island (HPI) was initially identified in Yersinia and can be horizontally transferred to Escherichia coli to produce yersiniabactin (Ybt), which enhances the pathogenicity of E. coli by competing with the host for Fe3+. Pyroptosis is gasdermin-induced necrotic cell death. It involves the permeabilization of the cell membrane and is accompanied by an inflammatory response. It is still unclear whether Ybt HPI can cause intestinal epithelial cells to undergo pyroptosis and contribute to gut inflammation during E. coli infection. In this study, we infected intestinal epithelial cells of mice with E. coli ZB-1 and the Ybt-deficient strain ZB-1Δirp2. Our findings demonstrate that Ybt-producing E. coli is more toxic and exacerbates gut inflammation during systemic infection. Mechanistically, our results suggest the involvement of the NLRP3/caspase-1/GSDMD pathway in E. coli infection. Ybt promotes the assembly and activation of the NLRP3 inflammasome, leading to GSDMD cleavage into GSDMD-N and promoting the pyroptosis of intestinal epithelial cells, ultimately aggravating gut inflammation. Notably, NLRP3 knockdown alleviated these phenomena, and the binding of free Ybt to NLRP3 may be the trigger. Overall, our results show that Ybt HPI enhances the pathogenicity of E. coli and induces pyroptosis via the NLRP3 pathway, which is a new mechanism through which E. coli promotes gut inflammation. Furthermore, we screened drugs targeting NLRP3 from an existing drug library, providing a list of potential drug candidates for the treatment of gut injury caused by E. coli.


Asunto(s)
Células Epiteliales , Infecciones por Escherichia coli , Escherichia coli , Mucosa Intestinal , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Ratones , Enterocitos/metabolismo , Enterocitos/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/fisiología
11.
Clin Infect Dis ; 75(1): e1054-e1062, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34788811

RESUMEN

BACKGROUND: To combat the coronavirus disease 2019 (COVID-19) pandemic, nonpharmaceutical interventions (NPIs) were implemented worldwide, which impacted a broad spectrum of acute respiratory infections (ARIs). METHODS: Etiologically diagnostic data from 142 559 cases with ARIs, who were tested for 8 viral pathogens (influenza virus [IFV], respiratory syncytial virus [RSV], human parainfluenza virus [HPIV], human adenovirus [HAdV], human metapneumovirus [HMPV], human coronavirus [HCoV], human bocavirus [HBoV], and human rhinovirus [HRV]) between 2012 and 2021, were analyzed to assess the changes in respiratory infections in China during the first COVID-19 pandemic year compared with pre-pandemic years. RESULTS: Test-positive rates of all respiratory viruses decreased during 2020, compared to the average levels during 2012-2019, with changes ranging from -17.2% for RSV to -87.6% for IFV. Sharp decreases mostly occurred between February and August when massive NPIs remained active, although HRV rebounded to the historical level during the summer. While IFV and HMPV were consistently suppressed year-round, RSV, HPIV, HCoV, HRV, and HBoV resurged and went beyond historical levels during September 2020-January 2021, after NPIs were largely relaxed and schools reopened. Resurgence was more prominent among children <18 years and in northern China. These observations remain valid after accounting for seasonality and long-term trend of each virus. CONCLUSIONS: Activities of respiratory viral infections were reduced substantially in the early phases of the COVID-19 pandemic, and massive NPIs were likely the main driver. Lifting of NPIs can lead to resurgence of viral infections, particularly in children.


Asunto(s)
COVID-19 , Bocavirus Humano , Metapneumovirus , Orthomyxoviridae , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Virosis , Virus , COVID-19/epidemiología , Niño , Humanos , Pandemias , Virus de la Parainfluenza 1 Humana
12.
FASEB J ; 35(11): e21972, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34613642

RESUMEN

The misalignment of eating time and the endogenous circadian rhythm impairs the body's ability to maintain homeostasis. Although it is well established that children and growing animals differ from adults in their energy metabolism and behavioral patterns, little is known about how mistimed feeding disturbs the diurnal rhythms of behavior and metabolism in children and growing diurnal animals. In this study, growing pigs (diurnal animal) were randomly assigned to the daytime-restricted feeding (DRF) and nighttime-restricted feeding (NRF) groups for 5 weeks. Compared with observations in the DRF group, NRF disrupted the diurnal rhythm of behavior and clock genes and lowered the serum ghrelin, dopamine, and serotonin levels during the daytime and nighttime. Microbiome analysis results suggested that NRF altered the diurnal rhythm and composition of the gut microbiota, and increased log-ratios of Catenibacterium:Butyrivibrio and Streptococcus:Butyrivibrio. Based on the serum proteome, the results further revealed that rhythmic and upregulated proteins in NRF were mainly involved in oxidative stress, lipid metabolism, immunity, and cancer biological pathways. Serum physiological indicators further confirmed that NRF decreased the concentration of melatonin and fibroblast growth factor 21 during the daytime and nighttime, increased the diurnal amplitude and concentrations of very-low-density lipoprotein cholesterol, triglyceride, and total cholesterol, and increased the apolipoprotein B/ApoA1 ratio, which is a marker of metabolic syndrome. Taken together, this study is the first to reveal that mistimed feeding disrupts the behavioral rhythms of growing pigs, reprograms gut microbiota composition, reduces the serum levels of hormones associated with fighting depression and anxiety, and increases the risk of lipid metabolic dysregulation.


Asunto(s)
Ritmo Circadiano , Conducta Alimentaria , Metabolismo de los Lípidos , Animales , Porcinos
13.
FASEB J ; 35(1): e21166, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33184921

RESUMEN

An unfavorable lifestyle disrupts the circadian rhythm, leading to metabolic dysfunction in adult humans and animals. Increasing evidence suggests that night-restricted feeding (NRF) can effectively prevent ectopic fat deposition caused by circadian rhythm disruption, and reduce the risk of metabolic diseases. However, previous studies have mainly focused on the prevention of obesity in adults by regulating dietary patterns, whereas limited attention has been paid to the effect of NRF on metabolism during growth and development. Here, we used weaning rabbits as models and found that NRF increased body weight gain without increasing feed intake, and promoted insulin-mediated protein synthesis through the mTOR/S6K pathway and muscle formation by upregulating MYOG. NRF improved the circadian clock, promoted PDH-regulated glycolysis and CPT1B-regulated fatty-acid ß-oxidation, and reduced fat content in the serum and muscles. In addition, NRF-induced body temperature oscillation might be partly responsible for the improvement in the circadian clock and insulin sensitivity. Time-restricted feeding could be used as a nondrug intervention to prevent obesity and accelerate growth in adolescents.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Ingestión de Alimentos , Conducta Alimentaria , Obesidad , Animales , Masculino , Obesidad/metabolismo , Obesidad/patología , Obesidad/prevención & control , Conejos
14.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3765-3772, 2022 Jul.
Artículo en Zh | MEDLINE | ID: mdl-35850833

RESUMEN

Lignan is the main medicinal component of Eucommia ulmoides, and lignin is involved in the defense of plants against diseases and insect pests.They are synthesized from coniferyl alcohol with the help of dirigent(DIR) and peroxidase(POD), respectively.In this study, transcriptome assembly of stems and leaves of E.ulmoides was performed, yielding 112 578 unigenes.Among them, 70 459 were annotated in seven databases.A total of 59 unigenes encodes 11 key enzymes in the biosynthesis pathways of lignin and lignin, of which 11 encode POD and 8 encode DIR.A total of 13 unigenes encoding transcription factors are involved in phenylpropanoid metabolism. Compared with leaves of E.ulmoides, 7 575 unigenes were more highly expressed in stems, of which 462 were involved in phenylpropanoid biosynthesis.Our results extend the public transcriptome dataset of E.ulmoides, which provide valuable information for the analysis of biosynthesis pathways of lignan and lignin in E.ulmoides and lay a foundation for further study on the functions and regulation mechanism of key enzymes in lignan and lignin biosynthesis pathways.


Asunto(s)
Eucommiaceae , Lignanos , Vías Biosintéticas , Eucommiaceae/genética , Lignanos/metabolismo , Lignina/metabolismo , Transcriptoma
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(5): 492-499, 2022 May 15.
Artículo en Zh | MEDLINE | ID: mdl-35644188

RESUMEN

OBJECTIVES: To study the influence of umbilical cord milking versus delayed cord clamping on the early prognosis of preterm infants with a gestational age of <34 weeks. METHODS: PubMed, Web of Science, Embase, the Cochrane Library, CINAHL, China National Knowledge Infrastructure, Wanfang Data, Weipu Database, and SinoMed were searched for randomized controlled trials on umbilical cord milking versus delayed cord clamping in preterm infants with a gestational age of <34 weeks published up to November 2021. According to the inclusion and exclusion criteria, two researchers independently performed literature screening, quality evaluation, and data extraction. Review Manger 5.4 was used for Meta analysis. RESULTS: A total of 11 articles were included in the analysis, with 1 621 preterm infants in total, among whom there were 809 infants in the umbilical cord milking group and 812 in the delayed cord clamping group. The Meta analysis showed that compared with delayed cord clamping, umbilical cord milking increased the mean blood pressure after birth (weighted mean difference=3.61, 95%CI: 0.73-6.50, P=0.01), but it also increased the incidence rate of severe intraventricular hemorrhage (RR=1.83, 95%CI: 1.08-3.09, P=0.02). There were no significant differences between the two groups in hemoglobin, hematocrit, blood transfusion rate, proportion of infants undergoing phototherapy, bilirubin peak, and incidence rates of complications such as periventricular leukomalacia and necrotizing enterocolitis (P>0.05). CONCLUSIONS: Compared with delayed cord clamping, umbilical cord milking may increase the risk of severe intraventricular hemorrhage in preterm infants with a gestational age of <34 weeks; however, more high-quality large-sample randomized controlled trials are needed for further confirmation.


Asunto(s)
Recien Nacido Prematuro , Clampeo del Cordón Umbilical , Hemorragia Cerebral , Constricción , Femenino , Edad Gestacional , Humanos , Lactante , Recién Nacido , Embarazo , Pronóstico , Cordón Umbilical/fisiología
16.
Pestic Biochem Physiol ; 174: 104805, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33838706

RESUMEN

Hyphantria cunea is one of the most destructive invasive agricultural and forest pests worldwide. In order to better understand the adaptation mechanism of H. cunea larvae to secondary metabolites of their highly diversified host plants, the physiological function and detoxification ability of midgut, as well as the gut microbial community were investigated in H. cunea larvae fed with cinnamic acid-treated artificial diets. Our results showed that cinnamic acid treatment could not affect the growth and food utilization of H. cunea larvae, as evidenced by a non-significantly altered larval body weight and efficiency of conversion of ingested food. Evaluation of oxidative stress-related parameters (e.g. malondialdehyde and hydrogen peroxide) and midgut histopathology also clearly confirmed that cinnamic acid treatment caused no significant oxidative damage and pathological changes in the larval midgut. Variance analysis showed that cinnamic acid treatment significantly increased the content of non-enzymatic antioxidants (ascorbic acid and glutathione), the activity of antioxidant enzymes (superoxide dismutase and peroxidase) and detoxification enzyme (carboxylate esterase), as well as the abundance of several gut microbiota at the genus level (Hydrogenophaga and Acinetobacter) involved in the organic substance degradation in larval midgut. Further Pearson's correlation analysis revealed that these strongly altered gut microbiota at the genus level appeared to be significantly correlated with the detoxification and antioxidation parameters. These findings demonstrate the high adaptability of H. cunea larvae to cinnamic acid involves in detoxification, antioxidation and gut microbiota response, and indicate the existence of an extremely effective counter-defense mechanism for H. cunea larvae against the secondary metabolites of host plants.


Asunto(s)
Microbioma Gastrointestinal , Mariposas Nocturnas , Animales , Antioxidantes , Cinamatos , Larva
17.
Cancer Cell Int ; 20: 14, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31938022

RESUMEN

BACKGROUND: Increasing evidence has suggested that microRNAs (miRNAs) act as key post-transcriptional regulators in tumor progression. Previous studies have confirmed that miR-17-5p functions as an oncogene in multiple cancers and contributes to tumor progression. However, the role and biological functions of miR-17-5p in the development of laryngeal squamous cell carcinoma (LSCC) still remain unknown. METHODS: qRT-PCR was used to detect miRNA and mRNA expression levels in LSCC tissues and cell lines. CCK-8 assay was used to measure cell viability and flow cytometry was performed to evaluate cell apoptosis. Western blot analysis was used to detect the protein levels of BAX, BCL-2, cleaved Caspase-3, PIK3R1 and AKT. Luciferase reporter assay was used to detect the effect of miR-17-5p on PIK3R1 expression. Xenograft animal model was used to test the effect of miR-17-5p on LSCC cell in vivo. RESULTS: In the present study, we found that miR-17-5p expression level was upregulated in LSCC tissues and cell lines. Depletion of miR-17-5p in LSCC cells significantly reduced cell proliferation and promoted cell apoptosis in vitro and in vivo. Mechanically, knockdown of miR-17-5p in LSCC cells inhibited BCL-2 expression while enhanced BAX and cleaved Caspase-3 protein expression. Moreover, depletion of miR-17-5p in LSCC cells suppressed AKT phosphorylation but did not influence PTEN expression. Importantly, miR-17-5p positively regulated PIK3R1 expression by directly binding to its 3'-untranslated region (UTR). Additionally, PIK3R1, which expression was downregulated in LSCC tissues and cell lines, was involved in LSCC cell survival by modulating the activation of AKT signal pathway. Dysregulation of miR-17-5p/PIK3R1 axis was participated in LSCC cell proliferation and apoptosis by inhibiting the activation of the PI3K/AKT signaling pathway. CONCLUSIONS: In conclusion, our study indicates that the miR-17-5p/PIK3R1 axis plays an essential role in the development of LSCC and provides a potential therapeutic target for LSCC treatment.

18.
Molecules ; 25(6)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197466

RESUMEN

Neochlorogenic acid (nCGA) is a phenolic compound isolated from mulberry leaf (Morus alba L.), which possesses multiple pharmacological activities containing antioxidant and anti-inflammatory effects. However, the role of nCGA in the treatment of acute pneumonia and the underlying molecular mechanism are still unclear. Hence, the aim of study is to investigate the anti-inflammatory properties of nCGA on LPS-stimulated inflammation in A549 cells. In the present study, results reported that nCGA without cytotoxicity significantly reduced the production of TNF-α, IL-6, and NO, and further suppressed the proteins of iNOS, COX2, TNF-α, IL-6 expression. Furthermore, nCGA also inhibited NF-κB activation and blocked MAPKs signaling pathway phosphorylation. In addition, we found nCGA significantly increased the expression of HO-1 via activating the AMPK/Nrf2 signaling pathway to attenuate the inflammatory response, whereas this protective effect of nCGA was reversed by pre-treatment with compound C (C.C, an AMPK inhibitor). Therefore, all these results indicated that nCGA might act as a natural anti-inflammatory agent for the treatment of acute pneumonia.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antiinflamatorios , Ácido Clorogénico/análogos & derivados , Morus/química , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales , Hojas de la Planta/química , Ácido Quínico/análogos & derivados , Transducción de Señal/efectos de los fármacos , Células A549 , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Ácido Clorogénico/química , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Ácido Quínico/química
19.
Zhongguo Zhong Yao Za Zhi ; 45(12): 2847-2857, 2020 Jun.
Artículo en Zh | MEDLINE | ID: mdl-32627459

RESUMEN

Steroidal saponins, which are the characteristic and main active constituents of Polygonatum, exhibit a broad range of pharmacological functions, such as regulating blood sugar, preventing cardiovascular and cerebrovascular diseases and anti-tumor. In this study, we performed RNA sequencing(RNA-Seq) analysis for the flowers, leaves, roots, and rhizomes of Polygonatum cyrtonema using the BGISEQ-500 platform to understand the biosynthesis pathway of steroidal saponins and study their key enzyme genes. The assembly of transcripts for four tissues generated 129 989 unigenes, of which 88 958 were mapped to several public databases for functional annotation, 22 813 unigenes were assigned to 53 subcategories and 64 877 unigenes were annotated to 136 pathways in KEGG database. Furthermore, 502 unigenes involved in the biosynthesis pathway of steroidal saponins were identified, of which 97 unigenes encoding 12 key enzymes. Cycloartenol synthase, the first key enzyme in the pathway of phytosterol biosynthesis, showed conserved catalytic domain and substrate binding domain based on sequence analysis and homology modeling. Differentially expressed genes(DEGs) were identified in rhizomes as compared to other tissues(flowers, leaves or roots).The 2 437 unigenes annotated by KEGG showed rhizome-specific expression, of which 35 unigenes involved in the biosynthesis of steroidal saponins. Our results greatly extend the public transcriptome dataset of Polygonatum and provide valuable information for the identification of candidate genes involved in the biosynthesis of steroidal saponins and other important secondary metabolites.


Asunto(s)
Polygonatum , Saponinas , Vías Biosintéticas , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Transcriptoma
20.
Cancer Cell Int ; 19: 196, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31384171

RESUMEN

BACKGROUND: Accumulating evidence shows that circular RNAs (circRNAs) plays vital roles in tumor progression. However, the biological functions of circRNAs in laryngeal squamous cell carcinoma (LSCC) metastasis is still unclear. METHODS: qRT-PCR was used to detect circFLNA, miRNAs and FLNA mRNA expression. Transwell assay and western blot were performed to evaluate cell migration ability and to detect FLNA, MMP2 and MLK1 protein expression, respectively. RNA pull-down analysis was used to find the binding-miRNAs of circFLNA. Luciferase reporter assay was used to examine the effect of circFLNA on miRNAs and miR-486-3p on FLNA expression. RESULTS: In this study, we confirmed that a Filamin A (FLNA)-derived hsa_circ_0092012 known as circFLNA, was upregulated in LSCC, and the higher expression of circFLNA was correlated with LSCC lymph node metastasis. Increased circFLNA facilitates LSCC cell migration ability through upregulating FLNA and MMP2 protein expression. Mechanistically, we find that circFLNA sponges miR-486-3p in LSCC cells, relieving miR-486-3p-induced repression of FLNA which promotes LSCC cell migration. Accordingly, FLNA mRNA is overexpressed in LSCC tissues and a higher FLNA level is correlated with poor survival. Dysregulation of the circFLNA/miR-486-3p/FLNA regulatory pathway contributes to LSCC migration. CONCLUSIONS: In summary, our study sheds light on the regulatory mechanism of circFLNA in LSCC migration via sponging miR-486-3p, which downregulates the FLNA protein expression. Targeting circFLNA/miR-486-3p/FLAN axis provides a potential therapeutic target for aggressive LSCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA