Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 662: 31-38, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38335737

RESUMEN

Developing efficient and durable self-supporting catalytic electrodes is an important way for industrial applications of hydrogen evolution reaction. Currently, commercial nickel foam (NF)-based electrode has been widely used due to its good catalytic performance. However, the NF consisting of smooth skeleton surface and large pores not only exhibits poor conductivity but also provides insufficient space for catalyst decoration and sufficient adhesion, resulting in inadequate catalytic performance and poor durability of NF-based electrodes. In this paper, a novel three-dimensional porous Ni substrate with multangular skeleton surface and small pore structure was prepared by a modified spark plasma sintering technique, and subsequently Ni3Se2@Porous Ni electrode with a large number of Ni3Se2 nanosheets uniformly distributed on the surface was obtained by one-step in-situ selenization. The electrode exhibits outstanding conductivity and catalytic hydrogen evolution reaction, providing a low overpotential of 183 mV at a current density of 100 mA cm-2. Due to the strong interfacial bonding between Ni and Ni3Se2, the Ni3Se2@Porous Ni electrode shows strong durability, which can work stably at 85 mA cm-2 for more than 200 h. This work provides an effective strategy for the rational preparation of metal substrates for efficient and durable self-supporting catalytic electrodes.

2.
Small Methods ; : e2301465, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38164889

RESUMEN

Exploring efficient and robust self-supporting hydrogen evolution reaction (HER) electrodes using simple, accessible, and low-cost synthetic processes is crucial for the commercial application of water electrolysis at high current densities. Ni-based self-supporting electrodes are widely studied owing to their low cost and good catalytic performance. However, to date, the preparation of Ni-based electrodes requires multistep and complex preparation processes. In this study, a novel one-step in situ sintering method to synthesize mechanically stable and highly active Ni3 Se2 -Ni electrodes with well-controlled morphologies and structures is developed. Their excellent performance and durability can be attributed to the numerous highly active nano-Ni3 Se2 catalysts embedded on the surface of the Ni skeleton, the excellent conductivity of the interconnected conductive network, and the strong interfacial bonding between Ni3 Se2 and Ni. As a result, the Ni3 Se2 -Ni600 electrode can operate stably at 85 and 400 mA cm-2 for more than 800 and 300 h, respectively. Moreover, the Ni3 Se2 -Ni600 electrode displays outstanding stability for over 500 h in a commercial two-electrode system. This study provides a feasible one-step synthesis method for low-cost, high-efficiency metal selenide-metal self-supporting electrodes for water electrolysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA