Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38811360

RESUMEN

The advancement of spatial transcriptomics (ST) technology contributes to a more profound comprehension of the spatial properties of gene expression within tissues. However, due to challenges of high dimensionality, pronounced noise and dynamic limitations in ST data, the integration of gene expression and spatial information to accurately identify spatial domains remains challenging. This paper proposes a SpaNCMG algorithm for the purpose of achieving precise spatial domain description and localization based on a neighborhood-complementary mixed-view graph convolutional network. The algorithm enables better adaptation to ST data at different resolutions by integrating the local information from KNN and the global structure from r-radius into a complementary neighborhood graph. It also introduces an attention mechanism to achieve adaptive fusion of different reconstructed expressions, and utilizes KPCA method for dimensionality reduction. The application of SpaNCMG on five datasets from four sequencing platforms demonstrates superior performance to eight existing advanced methods. Specifically, the algorithm achieved highest ARI accuracies of 0.63 and 0.52 on the datasets of the human dorsolateral prefrontal cortex and mouse somatosensory cortex, respectively. It accurately identified the spatial locations of marker genes in the mouse olfactory bulb tissue and inferred the biological functions of different regions. When handling larger datasets such as mouse embryos, the SpaNCMG not only identified the main tissue structures but also explored unlabeled domains. Overall, the good generalization ability and scalability of SpaNCMG make it an outstanding tool for understanding tissue structure and disease mechanisms. Our codes are available at https://github.com/ZhihaoSi/SpaNCMG.


Asunto(s)
Algoritmos , Transcriptoma , Humanos , Animales , Ratones , Perfilación de la Expresión Génica/métodos , Redes Neurales de la Computación , Biología Computacional/métodos , Corteza Prefrontal/metabolismo
2.
Clin Chem Lab Med ; 61(2): 366-376, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36367370

RESUMEN

OBJECTIVES: Bloodstream infection (BSI) is one of the major causes of death in pediatric tumor patients. Blood samples are relatively easy to obtain and thus provide a ready source of infection-related biological markers for the prompt evaluation of infection risk. METHODS: A total of 259 pediatric tumor patients were included from May 2019 to March 2022. Patients were divided into BSI group (n=70) and control group (n=189). Clinical and biological data were collected using electronic medical records. Differences in biological markers between BSI group and control group and differences before and during infection in BSI group were analyzed. RESULTS: The infected group showed higher levels of procalcitonin (PCT) and hypersensitive C-reactive-protein (hsCRP), and lower prealbumin (PA) than the uninfected group. Area under the receiver-operating curve (ROC) curves (AUC) of PCT, hsCRP and NLR (absolute neutrophil count to the absolute lymphocyte count) were 0.756, 0.617 and 0.612. The AUC of other biomarkers was ≤0.6. In addition, PCT, hsCRP, NLR and fibrinogen (Fg) were significantly increased during infection, while PA and lymphocyte (LYM) were significantly decreased. Antibiotic resistant of Gram-positive bacteria to CHL, SXT, OXA and PEN was lower than that of Coagulase-negative Staphylococcus. Resistant of Gram-positive bacteria to CHL was lower, while to SXT was higher than that of Gram-negative bacteria. CONCLUSIONS: This study explored the utility of biomarkers to assist in diagnosis and found that the PCT had the greatest predictive value for infection in pediatric tumor patients with BSI. Additionally, the PCT, hsCRP, NLR, PA, LYM and Fg were changed by BSI.


Asunto(s)
Bacteriemia , Neoplasias , Sepsis , Niño , Humanos , Polipéptido alfa Relacionado con Calcitonina , Proteína C-Reactiva/análisis , Neutrófilos/metabolismo , Curva ROC , Bacteriemia/diagnóstico , Estudios Retrospectivos , Sepsis/diagnóstico , Linfocitos/metabolismo , Biomarcadores , Neoplasias/complicaciones , Neoplasias/diagnóstico
3.
Phytopathology ; 113(6): 1048-1057, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36449525

RESUMEN

Type 2C protein phosphatases regulate various biological processes in eukaryotes. However, their functions in Verticillium dahliae have not been characterized. In this study, homologs VdPtc1, VdPtc3, VdPtc5, VdPtc6, and VdPtc7 were identified in V. dahliae on the basis of homologous comparison with those in Saccharomyces cerevisiae. VdPtc2 and VdPtc4 are missing in the genome of the V. dahliae XJ592 strain. VdPtc3 is the homolog of Ptc2, Ptc3, and Ptc4 proteins in S. cerevisiae, implying that VdPtc3 may play versatile functions in V. dahliae. VdPtc3 promoted conidium development, melanin, and microsclerotium formation in V. dahliae. The ΔVdPtc3 strains showed increased sensitivity to NaCl and sorbitol and augmented the phosphorylation of p38 mitogen-activated protein kinase homolog Hog1 induced by osmotic stress. Besides, the ΔVdPtc3 strains also showed milder Verticillium wilt symptom on cotton. Furthermore, VdPtc3 interacts with VdAtg1, which modulates melanin and microsclerotium formation, as well as pathogenicity.


Asunto(s)
Ascomicetos , Verticillium , Virulencia , Saccharomyces cerevisiae , Melaninas/genética , Melaninas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Enfermedades de las Plantas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
Plant Dis ; 107(6): 1664-1669, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36471470

RESUMEN

Verticillium wilt is primarily caused by the fungus Verticillium dahliae and represents one of the most important worldwide soilborne plant diseases. The causal agent can be spread by microsclerotia and conidia attached to seeds during national/international trade or in soil between fields. Consequently, accurate, sensitive, and rapid detection of V. dahliae from complex samples is critical for restricting entry of the pathogen to a new region/environment and enforcing early management of Verticillium wilt. Based on CRISPR/Cas12a and recombinant polymerase amplification (RPA) technologies, we developed an accurate, sensitive, and rapid detection method for V. dahliae with paper-based lateral flow strips. A highly efficient and specific CRISPR RNA (crRNA) was designed for the GAPDH gene of V. dahliae and was validated using several closely related Verticillium spp. Excluding the time required for the DNA extraction from the complex samples, a minimum of 40 min was required for the detection time. The RPA-CRISPR/Cas12a detection system had a lower detection limit of ∼10 copies of genomic DNA per reaction and was able to successfully detect as little as one microsclerotium per gram of soil. In addition, field samples displaying symptoms suggestive of V. dahliae were able to be positively identified for the presence of V. dahliae. Taken together, this study broadens the applications of CRISPR/Cas12a nucleic acid detection to soilborne crop diseases and will contribute to the future development of field-deployable diagnostic tools.


Asunto(s)
Ascomicetos , Sistemas CRISPR-Cas , Comercio , Internacionalidad , Suelo , Tecnología
5.
Plant Dis ; 107(9): 2784-2791, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36802296

RESUMEN

Seeds play a critical role in the production of American ginseng. Seeds are also one of the most important media for the long-distant dissemination and the crucial way for pathogen survival. Figuring out the pathogens carried by seeds is the basis for effective management of seedborne diseases. In this paper, we tested the fungi carried by the seeds of American ginseng from the main production areas of China using incubation and highly throughput sequencing methods. The seed-carried rates of fungi in Liuba, Fusong, Rongcheng, and Wendeng were 100, 93.8, 75.2, and 45.7%, respectively. Sixty-seven fungal species, which belonged to 28 genera, were isolated from the seeds. Eleven pathogens were identified from the seed samples. Among the pathogens, Fusarium spp. were found in all of the seed samples. The relative abundance of Fusarium spp. in the kernel was higher than that in the shell. Alpha index showed that the fungal diversity between seed shell and kernel differed significantly. Nonmetric multidimensional scaling analysis revealed that the samples from different provinces and between seed shell and kernel were distinctly separated. The inhibition rates of four fungicides to seed-carried fungi of American ginseng were 71.83% for Tebuconazole SC, 46.67% for Azoxystrobin SC, 46.08% for Fludioxonil WP, and 11.11% for Phenamacril SC. Fludioxonil, a conventional seed treatment agent, showed a low inhibitory effect on seed-carried fungi of American ginseng.


Asunto(s)
Fungicidas Industriales , Fusarium , Panax , Endófitos/genética , Fusarium/genética , Fungicidas Industriales/farmacología , Semillas/microbiología , Panax/microbiología
6.
Biochem Biophys Res Commun ; 612: 134-140, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35525197

RESUMEN

A/J mouse is a typical animal model of age-related deafness. Previous studies have shown that the mice suffer from progressive hearing loss and degeneration of cochlear cells, and a variation of H55 N in citrate synthase (CS) causes about 40% the hearing loss. CS is a key enzyme in the tricarboxylic acid cycle, which is transported from cytoplasm to mitochondria after synthesis, sorted by the mitochondrial targeting sequence (MTS). To explore the mechanism of CS (H55 N) variation in affecting its function, HEI-OC1 cells were infected with lentivirus particles to express CS-Flag or CS(H55 N)-Flag. The results showed that H55 N variation in CS, as purified by co-immunoprecipitation, decreased the enzyme activity by about 50%. Confocal microscope co-localization indicated that the CS (H55 N) variation led to a decrement in its mitochondrial content. Western blot also showed the amount of CS(H55 N)-Flag was more than that of CS(WT)-Flag in the cytosol. The results suggest H55 N variation in CS lead to decrement of its enzyme activity and targeting transport to mitochondria. We therefore conclude that decrement in CS activity and mitochondrial delivery contributes to the degeneration of cochlear cells and thus the hearing loss in A/J mice.


Asunto(s)
Pérdida Auditiva , Mitocondrias , Animales , Citrato (si)-Sintasa , Cóclea , Ratones
7.
Appl Environ Microbiol ; 88(22): e0138522, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36342142

RESUMEN

Transcription factors (TFs) bind to the promoters of target genes to regulate gene expression in response to different stimuli. The functions and regulatory mechanisms of transcription factors (TFs) in Verticillium dahliae are, however, still largely unclear. This study showed that a C2H2-type zinc finger TF, VdCf2 (V. dahliae chorion transcription factor 2), plays key roles in V. dahliae growth, melanin production, and virulence. Transcriptome sequencing analysis showed that VdCf2 was involved in the regulation of expression of genes encoding secreted proteins, pathogen-host interaction (PHI) homologs, TFs, and G protein-coupled receptors (GPCRs). Furthermore, VdCf2 positively regulated the expression of VdPevD1 (VDAG_02735), a previously reported virulence factor. VdCf2 thus regulates the expression of several pathogenicity-related genes that also contribute to virulence in V. dahliae. VdCf2 also inhibited the transcription of the Vd276-280 gene cluster and interacted with two members encoding proteins (VDAG_07276 and VDAG_07278) in the gene cluster. IMPORTANCE Verticillium dahliae is an important soilborne phytopathogen which can ruinously attack numerous host plants and cause significant economic losses. Transcription factors (TFs) were reported to be involved in various biological processes, such as hyphal growth and virulence of pathogenic fungi. However, the functions and regulatory mechanisms of TFs in V. dahliae remain largely unclear. In this study, we identified a new transcription factor, VdCf2 (V. dahliae chorion transcription factor 2), based on previous transcriptome data, which participates in growth, melanin production, and virulence of V. dahliae. We provide evidence that VdCf2 regulates the expression of the pathogenicity-related gene VdPevD1 (VDAG_02735) and Vd276-280 gene cluster. VdCf2 also interacts with VDAG_07276 and VDAG_07278 in this gene cluster based on a yeast two-hybrid and bimolecular fluorescence complementation assay. These results revealed the regulatory mechanisms of a pivotal pathogenicity-related transcription factor, VdCf2 in V. dahliae.


Asunto(s)
Verticillium , Virulencia/genética , Verticillium/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Metabolismo Secundario , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Melaninas/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Familia de Multigenes , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología
8.
Proteome Sci ; 20(1): 14, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071491

RESUMEN

BACKGROUND: Citrate Synthase (Cs) gene mutation (locus ahL4) has been found to play an important role in progressive hearing loss of A/J mice. HEI-OC1 cells have been widely used as an in vitro system to study cellular and molecular mechanisms related to hearing lose. We previously reported the increased apoptosis and the accumulation of reactive oxygen species in shRNACs-1429 cells, a Cs low-expressed cell model from HEI-OCI. The details of the mechanism of ROS production and apoptosis mediated by the abnormal expression of Cs needed to research furtherly. METHODS: iTRAQ proteomics was utilized to detect the differentially expressed proteins (DEPs) caused by low expression of Cs. The GO and KEGG pathways analysis were performed for annotation of the differentially expressed proteins. Protein-protein interaction network was constructed by STRING online database. Immunoblotting was utilized to confirm the protein levels of the the differentially expressed proteins. RESULTS: The differentially expressed proteins were significantly enriched in various signaling pathways mainly related to mitochondrial dysfunction diseases including Parkinson's disease, Alzheimer's disease, Huntington's disease, et al. Most noteworthy, the oxidative phosphorylation pathway was most significantly suppressed in the shRNACs-1429 cells,, in which a total of 10 differentially expressed proteins were enriched and were all downregulated by the abnormal expression of Cs. The downregulations of Ndufb5, Ndufv1 and Uqcrb were confirmed by immunoblotting. Meanwhile, the ATP levels of shRNACs-1429 cells were also reduced. CONCLUSIONS: These results suggest that low level expression of Cs induces the inhibition of oxidative phosphorylation pathway, which is responsible for the high level production of reactive oxygen species and low level of ATP, leading to the apoptosis of cochlear cells. This study may provide new theories for understanding and therapy of progressive hearing loss.

9.
J Pathol ; 253(2): 148-159, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33044755

RESUMEN

SETDB1 is a histone lysine methyltransferase that has critical roles in cancers. However, its potential role in gastric cancer (GC) remains obscure. Here, we mainly investigate the clinical significance and the possible role of SETDB1 in GC. We find that SETDB1 expression is upregulated in GC tissues and its high-level expression was a predictor of poor prognosis in patients. Overexpression of SETDB1 promoted cell proliferation and metastasis, while SETDB1 suppression had an opposite effect both in vitro and in vivo. Mechanistically, SETDB1 was shown to interact with ERG to promote the transcription of cyclin D1 (CCND1) and matrix metalloproteinase 9 (MMP9) through binding to their promoter regions. In addition, the expression of SETDB1 was also enhanced by the transcription factor TCF4 at the transcriptional level in GC. Furthermore, SETDB1 expression was found to be induced by Helicobacter pylori (H. pylori) infection in a TCF4-dependent manner. Taken together, our results indicate that SETDB1 is aberrantly overexpressed in GC and plays key roles in gastric carcinogenesis and metastasis via upregulation of CCND1 and MMP9. Our work also suggests that SETDB1 could be a potential oncogenic factor and a therapeutic target for GC. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Ciclina D1/metabolismo , Infecciones por Helicobacter/patología , N-Metiltransferasa de Histona-Lisina/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias Gástricas/genética , Factor de Transcripción 4/metabolismo , Animales , Carcinogénesis , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/genética , Progresión de la Enfermedad , Femenino , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Metaloproteinasa 9 de la Matriz/genética , Ratones Endogámicos BALB C , Invasividad Neoplásica , Metástasis de la Neoplasia , Regiones Promotoras Genéticas/genética , Estómago/patología , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patología , Factor de Transcripción 4/genética , Regulación hacia Arriba
10.
Plant Dis ; 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441010

RESUMEN

American ginseng (Panax quinquefolium L.) originating from North America is one of important herbal medicine and economic crops . With the increasing market demand, China has become the third producer and the largest consumer country of American ginseng. However, continuous cropping obstacle has become the most serious problem for the production of American ginseng, and the continuous cropping of soils usually lead to accumulations of root fungal pathogens and increasing plant disease occurrence (1), root rot caused by the notorious soil-borne pathogenic fungi, Fusarium spp., results in a significant reduction of yield and quality of American ginseng. Investigation of American ginseng root rot was carried out in Liuba county, Shaanxi province, China from 2017 to 2019. About 20% of over 3-year-old American ginseng showed varied root rot symptoms in newly reclaimed fields, and more than 70% in continuous American ginseng planting fields. Among these root rot diseases, we found one kind of disease which shows symptoms of red leaves in initial stage and yellow or yellow brown lesions at the reed heads or taproots. The lesions mainly appear on the root surface; however, the vascular tissue has no discoloration. The aboveground parts become wilted and died, and the whole root appears dark brown rots. Fifteen Fusarium spp. isolates were obtained by cutting diseased rot roots into 5 × 5 mm2 pieces, disinfecting in 70% ethanol for 1 min, rinsing 2 ~ 3 times in sterile water for 1 min and isolating on PDA medium including 50 µg/mL streptomycin sulfate. All the isolates have identical morphological characteristics. The colony was white with curved and uplifted aerial hyphae in central region. The colony diameter was 48 ~51 mm after 6 days at room temperature. Microconidia were oval to cylindrical shape with 0 to 1 septa, ranged from 6.24 to10.09 µm long; the macroconidia were fusiform to conical with a hooked apical cell and a foot-shaped basal cell, usually 3 to 5 septa, ranged from 31.45 to 42.52 µm long. The chlamydospores were not found under our culture condition. Preliminary data analysis showed that the morphological characteristics of these isolates were consistent with the descriptions of Fusarium redolens (2). To clarify the fungus in the taxonomy , the rDNA internal transcribed spacer (ITS), the translation elongation factor 1 alpha (TEF1-α) and the RNA polymerase II subunit 1 (RPB1) fragments of two randomly selected isolates were amplified and sequenced. The sequences of the corresponding fragments of the two isolates were identical. The blast results in the GenBank and FUSARIUM-ID databases show the isolates belong to F. redolens (3). Previous study indicated F. redolens has an indistinguishable relative, F. hostae (4). Although the ITS sequence (MW331695) cannot provide enough information to distinguish them, the phylogenetic tree combined the sequence of TEF1-α (tempID: 2407237 ) and RPB1 (tempID: 2407229) clearly showed that the isolates are F. redolens. (Fig) The pathogenicity of a representative isolate, YP04, was tested on ginseng taproot by in vivo inoculation experiments with three replications. The taproot surface of 2-year-old healthy ginseng was washed and disinfested with 75% alcohol for 1 min and rinsed with sterile water, and dried. The surface of taproot was injured with sterilized steel needles and immersed in 1 × 106 /ml spore suspension (sterile water for control plants) for 30 min. The treatment and control plants were transplanted in 20 cm diameter flowerpots filled with sterilized humus and cultured in a greenhouse at 18-23°C. Six days after transplanting, the leaves began to turn red. The cortex of ginseng taproot showed yellow brown lesions and the vascular tissue turn to light yellow. Fifteen days after transplanting, the aboveground parts of treatment plants began to wilting and the taproots showed serious rots. no taproot rot was observed in the controls. The pathogen was re-isolated from the diseased taproots successfully. To our knowledge, this is the first report of F. redolens causing root rot of American ginseng in China.

11.
Mol Plant Microbe Interact ; 33(4): 565-568, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31958033

RESUMEN

Verticillium dahliae is a widely distributed soilborne pathogen that causes vascular wilt in more than 200 plant species. Defoliating and nondefoliating symptoms caused by the disease that result in either the loss or retention of leaves in infected plants, respectively, in hosts such as cotton, olive, and okra, divide the causal agent into defoliating and nondefoliating pathotypes. Our goal in this current work was to generate genome resources for the defoliating strain XJ592 and the nondefoliating strain XJ511 of V. dahliae isolated from cotton in China.


Asunto(s)
Genoma Fúngico , Plantas , Verticillium , China , Genoma Fúngico/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Plantas/microbiología , Verticillium/genética
12.
BMC Med Genet ; 21(1): 121, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32487028

RESUMEN

BACKGROUND: The autosomal recessive non-syndromic deafness DFNB28 is characterized by prelingual sensorineural hearing loss. The disease is related with mutations in TRIOBP (Trio- and F-actin-Binding Protein) gene, which has three transcripts referred to as TRIOBP-5, TRIOBP - 4 and TRIOBP-1. Among them, TRIOBP-5/- 4 are expressed in the inner ears and crucial for maintaining the structure and function of the stereocilia. METHODS: The proband is a 26-year-old Chinese female. She and her younger brother have being suffered from severe deafness since birth, whereas her parents, who are cousins, have normal communication ability. Hearing impairment of the two siblings was determined by pure tone audiometry. Whole Exome Sequencing (WES) was performed on the genomic DNA of the proband and Sanger sequencing was conducted on the DNA samples of the four family members. RESULTS: Tests of pure tone hearing thresholds showed a severe to profound symmetric hearing loss for the proband and her younger brother. Moreover, a novel TRIOBP c.1342C > T (p.Arg448*) variant was identified by WES in the DNA sample of the proband and confirmed by Sanger sequencing in DNA of the family members. CONCLUSIONS: The TRIOBP c.1342C > T (p.Arg448*) variant is predicted to disrupt TRIOBP-5 and TRIOBP-4, which may lead to the congenital deafness. The results will broaden the spectrum of pathogenic variants in TRIOBP gene. The characteristics of deafness in the family imply that marriage between close relatives should be avoided.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/genética , Proteínas de Microfilamentos/genética , Mutación , Adulto , Pueblo Asiatico/genética , Audiometría , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiopatología , Consanguinidad , Femenino , Humanos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Secuenciación del Exoma
13.
Arch Biochem Biophys ; 688: 108402, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32418909

RESUMEN

A/J mouse is a model of age-related hearing loss (AHL). Mutation in the citrate synthase (Cs) gene of the mouse plays an important role in the hearing loss and degeneration of cochlear cells. To investigate the pathogenesis of cochlear cell damage in A/J mice resulted from Cs mutation, we downregulated the expression level of CS in HEI-OC1, a cell line of mouse cochlea, by shRNA. The results showed that low CS expression led to low ability of cell proliferation. Further study revealed an increase level of reactive oxygen species (ROS), activation of ATF6 mediated endoplasmic reticulum stress (ERS) and high expression levels of caspase12 and Bax in the cells. Moreover, the AEBSF, an ATF6 inhibitor, could reduce the expression levels of caspase-12 and Bax by inhibiting the hydrolysis of ATF6 in the cells. Finally, antioxidant alpha-lipoic acid (ALA) reduced the ROS levels and the apoptotic signals in the cell model with low CS expression. We therefore conclude that the ERS mediated apoptosis, which is triggered by ROS, may be involved in the cell degeneration in the cochleae of A/J mice.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Citrato (si)-Sintasa/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Estrés Oxidativo/efectos de los fármacos , Ácido Tióctico/farmacología , Factor de Transcripción Activador 6/antagonistas & inhibidores , Animales , Apoptosis/fisiología , Caspasa 12/metabolismo , Línea Celular , Proliferación Celular/fisiología , Regulación hacia Abajo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Modelos Biológicos , Estrés Oxidativo/fisiología , Presbiacusia/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Sulfonas/farmacología , Proteína X Asociada a bcl-2/metabolismo
14.
Cancer Cell Int ; 19: 3, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30622439

RESUMEN

BACKGROUND: Previous studies have demonstrated that the expression of homeobox8 (HOXB8) is higher in colorectal cancer (CRC) tissues than in normal tissues; however, the precise role of HOXB8 in human CRC cells remains to be elucidated. METHODS: We generated lentiviral constructs to overexpress and silence HOXB8 in CRC cell lines, and examined their biological functions through MTT, wound healing, colony and transwell, expression of signal transducer and activator of transcription 3 (STAT3) and epithelial-mesenchymal transition (EMT) related factors through western-blot. RESULTS: HOXB8 knockdown inhibited cellular proliferation and invasion in vitro as well as carcinogenesis and metastasis in vivo. HOXB8 also induced EMT, which is characterized by the down-regulation of E-cadherin and the up-regulation of Vimentin, N-cadherin, Twist, Zeb1 and Zeb2. Moreover, HOXB8 activated STAT3, which is known to play an oncogenic role in diverse human malignancies. CONCLUSIONS: Our results indicate that HOXB8 may be an independent prognostic factor in CRC. Therefore, deserved a deeper research.

15.
Plant Dis ; 103(6): 1357-1362, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31009364

RESUMEN

Verticillium wilt caused by Verticillium spp., also called potato early dying disease, is one of the most serious soilborne diseases affecting potato production in China. The disease has been expanding into most potato production areas over the past few years. Information on host resistance against Verticillium wilt among the potato cultivars in China is scarce, but it is critical for sustainable management of the disease. This study, therefore, evaluated 30 commercially popular potato cultivars against Verticillium dahliae strain Vdp83 and Verticillium nonalfalfae strain Vnp24, two well-characterized strains causing Verticillium wilt of potato in China. Both strains were isolated from diseased potato plants, and they were previously proven to be highly virulent. Ten plants of each cultivar were inoculated with the V. dahliae strain and incubated on greenhouse benches. Symptoms were rated at weekly intervals, and the relative area under the disease progress curve was calculated. The experiment was repeated once, and nonparametric analysis was used to calculate the relative marginal effects and the corresponding confidence intervals. Five resistant cultivars and four susceptible cultivars identified from the analyses were then challenged with the V. nonalfalfae strain. Cultivar responses to V. nonalfalfae were like those exhibited against V. dahliae, except for one cultivar. This study showed that resistance among potato cultivars exists in China against Verticillium spp. and that the resistance to V. dahliae identified in potato is also effective against the other Verticillium species that cause Verticillium wilt with a few exceptions. Cultivars identified as resistant to Verticillium wilt can be deployed to manage the disease until the breeding programs develop new cultivars with resistance from the sources identified in this study.


Asunto(s)
Resistencia a la Enfermedad , Solanum tuberosum , Verticillium , China , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Especificidad de la Especie , Verticillium/fisiología
16.
J Cell Mol Med ; 22(4): 2430-2441, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29383839

RESUMEN

We previously reported a novel positive feedback loop between thioredoxin-1 (Trx-1) and S100P, which promotes the invasion and metastasis of colorectal cancer (CRC). However, the underlying molecular mechanisms remain poorly understood. In this study, we examined the roles of Trx-1 and S100P in CRC epithelial-to-mesenchymal transition (EMT) and their underlying mechanisms. We observed that knockdown of Trx-1 or S100P in SW620 cells inhibited EMT, whereas overexpression of Trx-1 or S100P in SW480 cells promoted EMT. Importantly, S100A4 and the phosphorylation of AKT were identified as potential downstream targets of Trx-1 and S100P in CRC cells. Silencing S100A4 or inhibition of AKT phosphorylation eliminated S100P- or Trx-1-mediated CRC cell EMT, migration and invasion. Moreover, inhibition of AKT activity reversed S100P- or Trx-1-induced S100A4 expression. The expression of S100A4 was higher in human CRC tissues compared with their normal counterpart tissues and was significantly correlated with lymph node metastasis and poor survival. The overexpression of S100A4 protein was also positively correlated with S100P or Trx-1 protein overexpression in our cohort of CRC tissues. In addition, overexpression of S100P reversed the Trx-1 knockdown-induced inhibition of S100A4 expression, EMT and migration and invasion in SW620 cells. The data suggest that interplay between Trx-1 and S100P promoted CRC EMT as well as migration and invasion by up-regulating S100A4 through AKT activation, thus providing further potential therapeutic targets for suppressing the EMT in metastatic CRC.


Asunto(s)
Proteínas de Unión al Calcio/genética , Neoplasias Colorrectales/genética , Proteínas de Neoplasias/genética , Proteína de Unión al Calcio S100A4/genética , Tiorredoxinas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/genética , Humanos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Proteína Oncogénica v-akt/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt
17.
Sensors (Basel) ; 18(2)2018 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-29439495

RESUMEN

This article proposes a novel active localization method based on the mixed polarization multiple signal classification (MP-MUSIC) algorithm for positioning a metal target or an insulator target in the underwater environment by using a uniform circular antenna (UCA). The boundary element method (BEM) is introduced to analyze the boundary of the target by use of a matrix equation. In this method, an electric dipole source as a part of the locating system is set perpendicularly to the plane of the UCA. As a result, the UCA can only receive the induction field of the target. The potential of each electrode of the UCA is used as spatial-temporal localization data, and it does not need to obtain the field component in each direction compared with the conventional fields-based localization method, which can be easily implemented in practical engineering applications. A simulation model and a physical experiment are constructed. The simulation and the experiment results provide accurate positioning performance, with the help of verifying the effectiveness of the proposed localization method in underwater target locating.

18.
AAPS PharmSciTech ; 19(7): 3228-3236, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30187447

RESUMEN

In this study, mesoporous SnO2 (MSn) with a three-dimensional mesoporous structure was prepared using MCM-48 as the template in order to increase the oral bioavailability and dissolution rate of insoluble drugs. The model drug, nitrendipine (NDP), was loaded into the MSn by the adsorption method. The structural features of MSn were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and N2 adsorption (desorption) analysis. NDP was existed in the pore channels of MSn in an amorphous state, which was characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). MSn showed a good biocompatibility in the cell toxicity assay for Caco-2 cells. In vitro dissolution results suggested that MSn could significantly enhance the dissolution rate of NDP compared with commercial NDP tablets. Pharmacokinetic studies indicated that NDP-MSn tablets effectively enhanced the oral bioavailability of NDP. In conclusion, MSn was found to be a potential carrier for improving the solubility of insoluble drugs.


Asunto(s)
Nitrendipino/química , Compuestos de Estaño/química , Administración Oral , Animales , Disponibilidad Biológica , Células CACO-2 , Portadores de Fármacos , Humanos , Nitrendipino/farmacocinética , Porosidad , Conejos , Solubilidad
19.
Fungal Genet Biol ; 98: 1-11, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27866941

RESUMEN

The fungus Verticillium dahliae causes vascular wilt disease on many plant species, including economically important crop and ornamental plants worldwide. It produces darkly pigmented resting structures known as microsclerotia, which are able to survive for up to 14years in soil, and represent one of the defining characteristics of this species. The pigment produced in V. dahliae is dihydroxynaphthalene (DHN)-melanin, a form of melanin common among fungi and named so for the intermediary of this melanin biosynthetic pathway. In this study, we characterized the function of the V. dahliae Vayg1 gene, whose homologs were involved in melanin biosynthesis in Exophiala dermatitidis (Wayg1) and Aspergillus fumigatus (Aayg1), by deletion and complementation of the gene and co-incubating deletion mutant with wild-type strain. Results showed that melanin production and microsclerotial formation in deletion mutants are inhibited. The Vayg1 deletion mutant also exhibited reduced pathogenicity. These results showed that Vayg1 is necessary for melanin and microsclerotium production, and we may thus hypothesize that the Vayg1 product may catalyze two different precursors, one of which is essential for DHN melanin production and the other one is involved in a signal network for microsclerotial formation in V. dahliae.


Asunto(s)
Proteínas Fúngicas/genética , Melaninas/genética , Esporas Fúngicas/genética , Verticillium/genética , Regulación Fúngica de la Expresión Génica , Melaninas/biosíntesis , Naftoles , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Eliminación de Secuencia , Esporas Fúngicas/patogenicidad , Verticillium/crecimiento & desarrollo , Verticillium/patogenicidad
20.
Tumour Biol ; 39(3): 1010428317694546, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28349836

RESUMEN

Circular RNA, a class of non-coding RNA, is a new group of RNAs and is related to tumorigenesis. Circular RNAs are suggested to be ideal candidate biomarkers with potential diagnostic and therapeutic implications. However, little is known about their expression in human colorectal cancer. In our study, differentially expressed circular RNAs were detected using circular RNA array in paired tumor and adjacent non-tumorous tissues from six colorectal cancer patients. Expression levels of selected circular RNAs (hsa_circRNA_103809 and hsa_circRNA_104700) were measured by real-time polymerase chain reaction in 170 paired colorectal cancer samples for validation. Statistical analyses were conducted to investigate the association between hsa_circRNA_103809 and hsa_circRNA_104700 expression levels and respective patient clinicopathological features. Receiver operating characteristic curve was constructed to evaluate the diagnostic values. Our results indicated that there were 125 downregulated and 76 upregulated circular RNAs in colorectal cancer tissues compared with normal tissues. We also first demonstrated that the expression levels of hsa_circRNA_103809 ( p < 0.0001) and hsa_circRNA_104700 ( p = 0.0003) were significantly lower in colorectal cancer than in normal tissues. The expression level of hsa_circRNA_103809 was significantly correlated with lymph node metastasis ( p = 0.021) and tumor-node-metastasis stage ( p = 0.011), and the expression level of hsa_circRNA_104700 was significantly correlated with distal metastasis ( p = 0.036). The area under receiver operating characteristic curves of hsa_circRNA_103809 and hsa_circRNA_104700 were 0.699 ( p < 0.0001) and 0.616 ( p < 0.0001), respectively. In conclusion, these results suggest that hsa_circRNA_103809 and hsa_circRNA_104700 may be potentially involved in the development of colorectal cancer and serve as potential biomarkers for the diagnosis of colorectal cancer.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Neoplasias Colorrectales/genética , ARN/biosíntesis , Anciano , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , ARN/genética , ARN Circular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA