Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(13): e2320277121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38507450

RESUMEN

Proper expression of odor receptor genes is critical for the function of olfactory systems. In this study, we identified exitrons (exonic introns) in four of the 39 Odorant receptor (Or) genes expressed in the Drosophila antenna. Exitrons are sequences that can be spliced out from within a protein-coding exon, thereby altering the encoded protein. We focused on Or88a, which encodes a pheromone receptor, and found that exitron splicing of Or88a is conserved across five Drosophila species over 20 My of evolution. The exitron was spliced out in 15% of Or88a transcripts. Removal of this exitron creates a non-coding RNA rather than an RNA that encodes a stable protein. Our results suggest the hypothesis that in the case of Or88a, exitron splicing could act in neuronal modulation by decreasing the level of functional Or transcripts. Activation of Or88a-expressing olfactory receptor neurons via either optogenetics or pheromone stimulation increased the level of exitron-spliced transcripts, with optogenetic activation leading to a 14-fold increase. A fifth Or can also undergo an alternative splicing event that eliminates most of the canonical open reading frame. Besides these cases of alternative splicing, we found alternative polyadenylation of four Ors, and exposure of Or67c to its ligand ethyl lactate in the antenna downregulated all of its 3' isoforms. Our study reveals mechanisms by which neuronal activity could be modulated via regulation of the levels of Or isoforms.


Asunto(s)
Drosophila , Receptores Odorantes , Animales , Drosophila/genética , Odorantes , Empalme del ARN/genética , Empalme Alternativo/genética , Isoformas de Proteínas/genética , Receptores Odorantes/genética
2.
Proc Natl Acad Sci U S A ; 119(25): e2204238119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35700364

RESUMEN

The Anthropocene Epoch poses a critical challenge for organisms: they must cope with new threats at a rapid rate. These threats include toxic chemical compounds released into the environment by human activities. Here, we examine elevated concentrations of heavy metal ions as an example of anthropogenic stressors. We find that the fruit fly Drosophila avoids nine metal ions when present at elevated concentrations that the flies experienced rarely, if ever, until the Anthropocene. We characterize the avoidance of feeding and egg laying on metal ions, and we identify receptors, neurons, and taste organs that contribute to this avoidance. Different subsets of taste receptors, including members of both Ir (Ionotropic receptor) and Gr (Gustatory receptor) families contribute to the avoidance of different metal ions. We find that metal ions activate certain bitter-sensing neurons and inhibit sugar-sensing neurons. Some behavioral responses are mediated largely through neurons of the pharynx. Feeding avoidance remains stable over 10 generations of exposure to copper and zinc ions. Some responses to metal ions are conserved across diverse dipteran species, including the mosquito Aedes albopictus. Our results suggest mechanisms that may be essential to insects as they face challenges from environmental changes in the Anthropocene.


Asunto(s)
Efectos Antropogénicos , Drosophila melanogaster , Exposición a Riesgos Ambientales , Reacción de Fuga , Metales Pesados , Percepción del Gusto , Gusto , Aedes/fisiología , Animales , Reacción de Prevención , Cationes/toxicidad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Humanos , Metales Pesados/toxicidad , Receptores Ionotrópicos de Glutamato/metabolismo , Gusto/fisiología , Percepción del Gusto/fisiología
3.
PLoS Biol ; 17(5): e2006619, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31112532

RESUMEN

The Drosophila wing was proposed to be a taste organ more than 35 years ago, but there has been remarkably little study of its role in chemoreception. We carry out a differential RNA-seq analysis of a row of sensilla on the anterior wing margin and find expression of many genes associated with pheromone and chemical perception. To ask whether these sensilla might receive pheromonal input, we devised a dye-transfer paradigm and found that large, hydrophobic molecules comparable to pheromones can be transferred from one fly to the wing margin of another. One gene, Ionotropic receptor (IR)52a, is coexpressed in neurons of these sensilla with fruitless, a marker of sexual circuitry; IR52a is also expressed in legs. Mutation of IR52a and optogenetic silencing of IR52a+ neurons decrease levels of male sexual behavior. Optogenetic activation of IR52a+ neurons induces males to show courtship toward other males and, remarkably, toward females of another species. Surprisingly, IR52a is also required in females for normal sexual behavior. Optogenetic activation of IR52a+ neurons in mated females induces copulation, which normally occurs at very low levels. Unlike other chemoreceptors that act in males to inhibit male-male interactions and promote male-female interactions, IR52a acts in both males and females, and can promote male-male as well as male-female interactions. Moreover, IR52a+ neurons can override the circuitry that normally suppresses sexual behavior toward unproductive targets. Circuit mapping and Ca2+ imaging using the trans-Tango system reveals second-order projections of IR52a+ neurons in the subesophageal zone (SEZ), some of which are sexually dimorphic. Optogenetic activation of IR52a+ neurons in the wing activates second-order projections in the SEZ. Taken together, this study provides a molecular description of the chemosensory sensilla of a greatly understudied taste organ and defines a gene that regulates the sexual circuitry of the fly.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores de Feromonas/metabolismo , Sensilos/metabolismo , Alas de Animales/metabolismo , Animales , Proteínas de Drosophila/genética , Femenino , Silenciador del Gen , Interacciones Hidrofóbicas e Hidrofílicas , Canales Iónicos Activados por Ligandos/genética , Canales Iónicos Activados por Ligandos/metabolismo , Masculino , Neuronas/metabolismo , Optogenética , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Gusto/fisiología
4.
Biomed Chromatogr ; 36(10): e5438, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35778366

RESUMEN

Ilex pubescens is a famous Chinese herbal medicine, frequently used to treat cardiovascular disease in South China. In this study, we aim to explore the absorption properties of ilexgenin A (C1) and ilexsaponin B1 (C3) in vascular endothelial cells after administration of the total triterpenoid saponins from Ilex pubescens (IPTS) and clarify the possible transport mechanisms. A UPLC-qTOF-MS/MS system was used to identify the components in IPTS that could be intracellularly transported by human umbilical vein endothelial cells (HUVECs). Afterwards, a rapid, highly selective and sensitive method was established to simultaneously quantify the concentration of C1 and C3 in HUVECs after administration of IPTS. The results demonstrate that pretreatment with IPTS could promote the survival of HUVECs and reduce the damage caused by TNF-α to HUVECs. Among the main 11 components in IPTS, eight components could be absorbed by HUVECs, including seven triterpenoids and one phenolic acid. The uptake of C1 and C3 by HUVECs occurred in a time-, temperature- and concentration-dependent manner, indicating the participation of passive diffusion and active transportation mechanisms. The two triterpenoid saponins all exhibited rapid absorption and a bimodal phenomenon in their concentration-time profiles, and equilibrium could be achieved after 6 h. Furthermore, C1 and C3 intracellular transportation was regulated by serum proteins, sodium-dependent glucose transporter 1 and P-glycoprotein. The current research for the first time demonstrates the in vitro pharmacokinetics characteristics of C1 and C3 in HUVECs lines, which could supply a new way of understanding the treatment of cardiovascular diseases.


Asunto(s)
Ilex , Saponinas , Triterpenos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Saponinas/farmacología , Espectrometría de Masas en Tándem , Triterpenos/farmacología
5.
J Pharmacol Exp Ther ; 377(2): 254-264, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33658315

RESUMEN

Bariatric surgery is the most common and effective treatment of severe obesity; however, these bariatric procedures always result in detrimental effects on bone metabolism by underlying mechanisms. This study aims to investigate the skeletal response to bariatric surgery and to explore whether Clostridium butyricum alleviates gut microbiota alteration-induced bone loss after bariatric surgery. Consequently, male SD rats received Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) surgery, respectively, followed by body weight recording. The bone loss after bariatric surgery was further determined by dual-energy X-ray absorptiometry (DXA), micro-CT measurement, histologic analyses, and Western blot. Besides, 16S rDNA gene sequencing was performed to determine the gut microbiota alteration after surgery, and intervention with fecal microbiota from RYGB donor was conducted in obese SD rats, followed by C. butyricum administration. Accordingly, rats in the RYGB and SG groups maintained sustained weight loss, and DXA and micro-CT measurement further demonstrated significant bone loss after bariatric surgery. Besides, histologic and Western blot analyses validated enhanced osteoclastogenesis and inhibited osteoblastogenesis and defective autophagy after surgery. The 16S rDNA gene sequencing suggested a significant alteration of gut microbiota composition in the RYGB group, and intervention with fecal microbiota from RYGB donor further determined that this kind of alteration contributed to the bone loss after RYGB. Meanwhile, C. butyricum might protect against this postoperative bone loss by promoting osteoblast autophagy. In summary, this study suggests novel mechanisms to clarify the skeletal response to bariatric surgery and provides a potential candidate for the treatment of bone disorder among bariatric patients. SIGNIFICANCE STATEMENT: The significance of this study is the discovery of obvious bone loss and defective autophagy after bariatric surgery. Besides, it is revealed that gut microbiota alterations could be the reason for impaired bone mass after bariatric surgery. Furthermore, Clostridium butyricum could alleviate the gut microbiota alteration-induced bone loss after bariatric surgery by promoting osteoblast autophagy.


Asunto(s)
Cirugía Bariátrica/efectos adversos , Resorción Ósea/terapia , Clostridium butyricum/patogenicidad , Microbioma Gastrointestinal , Complicaciones Posoperatorias/terapia , Animales , Autofagia , Resorción Ósea/etiología , Resorción Ósea/microbiología , Masculino , Osteoblastos/metabolismo , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/microbiología , Ratas , Ratas Sprague-Dawley
6.
Arch Biochem Biophys ; 705: 108894, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33965368

RESUMEN

Accumulating evidence suggests that vitamin D (VD) has a therapeutic effect on non-alcoholic fatty liver disease (NAFLD). Pyroptosis and gut microbiota have been recognized as critical factors of the progression of NAFLD. However, the effect of VD on the pyroptosis and gut microbiota in NAFLD remains inconclusive. Herein, rats were fed high fat diet (HFD) for 12 weeks and concurrently treated with 5 µg/kg 1,25(OH)2D3 twice a week. BRL-3A cells were stimulated with 0.4 mmol/L palmitic acid (PA) and 1 µg/ml lipopolysaccharide (LPS) for 16 h and treated with 10-6 mol/L 1,25(OH)2D3. Effect of VD on the hepatic injury, lipid accumulation, activation of NLRP3 inflammasome and pyroptosis was determined in vivo and in vitro. Next, gasdermin D N-terminal (GSDMD-N) fragment was overexpressed in BRL-3A cells to investigate the role of pyroptosis in the therapeutic effect of VD on NAFLD. In addition, gut microbiota in NAFLD rats was also analyzed. Results showed that VD attenuated HFD-induced hepatic injury in vivo and PA-LPS-induced impairment of cell viability in vitro, and inhibited lipid accumulation, activation of NLRP3 inflammasome and pyroptosis in vivo and in vitro. GSDMD-N fragment overexpression suppressed the protective effect of VD on PA-LPS-induced activation of NLRP3 inflammasome, impairment of cell viability and lipid accumulation, indicating that VD might attenuate NAFLD through inhibiting pyroptosis. Additionally, VD also restored HFD-induced gut microbiota dysbiosis by increasing the relative abundance of Lactobacillus and reducing that of Acetatifactor, Oscillibacter and Flavonifractor. This study provides a novel mechanism underlying VD therapy against NAFLD.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/microbiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Piroptosis/efectos de los fármacos , Vitamina D/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratas
7.
Biomed Chromatogr ; 33(11): e4657, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31334861

RESUMEN

Oroxylum indicum, as a popular functional Chinese herbal medicine for reducing hyperactivity, relieving sore throat, smoothing the liver and adjusting stomach, mainly contains flavonoids. In this study, we aimed to establish a fast and sensitive method that enables to analyze the chemical components in O. indicum qualitatively and quantitatively. First, a total of 42 components were characterized by LC-quadrupole time-of-flight (qTOF)-tandem mass spectrometry (MS/MS), including 23 flavonoid glycosides, 13 flavonoids and six other types of compounds. Then, 17 characteristic components of the 19 common peaks in the chromatographic fingerprints of O. indicum were confirmed. Fifty samples were classified into two groups by hierarchical clustering analysis and orthogonal partial least squares-discriminant analysis, which also identified the 10 main chemical markers responsible for differences between samples. Last, the quantitative analysis of multiple components with a single marker method was established for simultaneous determination of six main active components in O. indicum by LC-UV with oroxin B was chosen as internal reference substance. Finally, a rapid and efficient method integrating HPLC with LC-electrospray ionization-qTOF-MS/MS analysis was established to comprehensively discriminate and assess the quality of O. indicum samples.


Asunto(s)
Bignoniaceae/química , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Espectrometría de Masas en Tándem/métodos , Análisis por Conglomerados , Flavonoides/análisis , Flavonoides/química , Glicósidos/análisis , Glicósidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos
8.
Int J Mol Sci ; 20(11)2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31212584

RESUMEN

Insulin signaling is mediated by a highly integrated network that controls glucose metabolism, protein synthesis, cell growth, and differentiation. Our previous work indicates that the insulin receptor tyrosine kinase substrate (IRTKS), also known as BAI1-associated protein 2-like 1 (BAIAP2L1), is a novel regulator of insulin network, but the mechanism has not been fully studied. In this work we reveal that IRTKS co-localizes with Src homology (SH2) containing inositol polyphosphate 5-phosphatase-2 (SHIP2), and the SH3 domain of IRTKS directly binds to SHIP2's catalytic domain INPP5c. IRTKS suppresses SHIP2 phosphatase to convert phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P3, PIP3) to phosphatidylinositol (3,4) bisphosphate (PI(3,4)P2). IRTKS-knockout significantly increases PI(3,4)P2 level and decreases cellular PI(3,4,5)P3 content. Interestingly, the interaction between IRTKS and SHIP2 is dynamically regulated by insulin, which feeds back and affects the tyrosine phosphorylation of IRTKS. Furthermore, IRTKS overexpression elevates PIP3, activates the AKT-mTOR signaling pathway, and increases cell proliferation. Thereby, IRTKS not only associates with insulin receptors to activate PI3K but also interacts with SHIP2 to suppress its activity, leading to PIP3 accumulation and the activation of the AKT-mTOR signaling pathway to modulate cell proliferation.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Transducción de Señal/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Células HEK293 , Células Hep G2 , Humanos , Inmunoprecipitación , Insulina/metabolismo , Proteínas de Microfilamentos/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Monoéster Fosfórico Hidrolasas/genética , Fosforilación/genética , Fosforilación/fisiología , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
9.
Dev Biol ; 432(2): 248-257, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29031632

RESUMEN

The dendritic processes of nociceptive neurons transduce external signals into neurochemical cues that alert the organism to potentially damaging stimuli. The receptive field for each sensory neuron is defined by its dendritic arbor, but the mechanisms that shape dendritic architecture are incompletely understood. Using the model nociceptor, the PVD neuron in C. elegans, we determined that two types of PVD lateral branches project along the dorsal/ventral axis to generate the PVD dendritic arbor: (1) Pioneer dendrites that adhere to the epidermis, and (2) Commissural dendrites that fasciculate with circumferential motor neuron processes. Previous reports have shown that the LIM homeodomain transcription factor MEC-3 is required for all higher order PVD branching and that one of its targets, the claudin-like membrane protein HPO-30, preferentially promotes outgrowth of pioneer branches. Here, we show that another MEC-3 target, the conserved TFIIA-like zinc finger transcription factor EGL-46, adopts the alternative role of specifying commissural dendrites. The known EGL-46 binding partner, the TEAD transcription factor EGL-44, is also required for PVD commissural branch outgrowth. Double mutants of hpo-30 and egl-44 show strong enhancement of the lateral branching defect with decreased numbers of both pioneer and commissural dendrites. Thus, HPO-30/Claudin and EGL-46/EGL-44 function downstream of MEC-3 and in parallel acting pathways to direct outgrowth of two distinct classes of PVD dendritic branches.


Asunto(s)
Dendritas/genética , Dendritas/metabolismo , Nociceptores/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/genética , Proteínas con Homeodominio LIM/metabolismo , Proteínas con Homeodominio LIM/fisiología , Proteínas de la Membrana/metabolismo , Nociceptores/fisiología , Elementos Reguladores de la Transcripción/genética , Células Receptoras Sensoriales/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Dedos de Zinc
10.
Molecules ; 23(4)2018 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-29642536

RESUMEN

The quantitative analysis of multiple components with a single marker (QAMS) method was firstly established for simultaneous determination of 18 active components in Ilex kudingcha C. J. Tseng by HPLC. Using rutin, isochlorogenic acid A and kudinoside A as internal refererence substances (IRS), compatibility results showed that the relative correction factors (RCFs) of all compounds showed good reproducibility under different chromatographic conditions. On the basis of previous studies, the accuracy of the QAMS method was systematically evaluated by investigating the influences of curve intercept, analytes and IRS concentration. The results showed that the concentration (especially at low level) of analytes and curve intercept were the major influencing parameters for the LRG-QAMS method (LRG = linear regression), whereas the influence of IRS concentration seemed more apparent in terms of the AVG-QAMS method (AVG = average). The two approaches were complementary with each other. In addition, hierarchical clustering analysis (HCA), principal components analysis (PCA) and similarity analysis (SA) were performed to differentiate and classify the samples based on the contents of 18 marker compounds. The results of the different chemometric analyses were completely consistent with each other, and could be supported by the quantification results.


Asunto(s)
Medicamentos Herbarios Chinos/química , Ilex/química , Ácido Clorogénico/análogos & derivados , Ácido Clorogénico/química , Cromatografía Líquida de Alta Presión/métodos , Análisis por Conglomerados , Simulación por Computador , Análisis de Componente Principal , Control de Calidad , Reproducibilidad de los Resultados , Saponinas/química , Triterpenos/química
11.
Molecules ; 22(11)2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29104273

RESUMEN

In contrast to the extensively reported therapeutic activities, far less attention has been paid to the intestinal absorption of the total saponins from Radix Ilicis Pubescentis (in Chinese Mao-Dong-Qing, MDQ). This study aimed to investigate the intestinal absorption characteristics of ilexgenin A (C1), ilexsaponin A1 (C2), ilexsaponin B1 (C3), ilexsaponin B2 (C4), ilexsaponin B3 (DC1), and ilexoside O (DC2) when administrated with the total saponins from MDQ (MDQ-TS). An UPLC method for simultaneous determination of C1, C2, C3, C4, DC1, and DC2 in intestinal outflow perfusate was developed and validated. The absorption characteristics of MDQ-TS were investigated by evaluating the effects of intestinal segments, drug concentration, P-glycoprotein (P-gp) inhibitor (verapomil), endocytosis inhibitor (amantadine) and ethylene diamine tetraacetic acid (EDTA, tight junction modulator) on the intestinal transportation of MDQ-TS by using a single-pass intestinal perfusion (SPIP) rat model, and the influence of co-existing components on the intestinal transport of the six saponins was discussed. The results showed that effective apparent permeability (Papp) of C1, C2, C3, C4, and DC2 administrated in MDQ-TS form had no segment-dependent changes at low and middle dosage levels. C1, C2, C3, D4, DC1, and DC2 administrated in MDQ-TS form all exhibited excellent transmembrane permeability with Papp > 0.12 × 10-2 cm·min-1. Meanwhile, Papp and effective absorption rate constant (Ka) values for the most saponins showed concentration dependence and saturation characteristics. After combining with P-gp inhibitor of verapamil, Papp of C2, C3, and DC1 in MDQ-TS group was significantly increased up to about 2.3-fold, 1.4-fold, and 3.4-fold, respectively in comparison to that of non-verapamil added group. Verapamil was found to improve the absorption of C2, C3, and DC1, indicating the involvement of an active transport mechanism in the absorption process. Compared with the non-amantadine added group, the absorption of C1, C2, C4, DC1, and DC2 were decreased by 40%, 71%, 31%, 53%, and 100%, respectively. Papp for the six target compounds increased up to about 1.2-2.1-fold in comparison with the non-EDTA added, respectively. The gastrointestinal transport of MDQ-TS could be greatly promoted by EDTA, and inhibited by amantadine, implying that the intestinal absorption of MDQ-TS was by passive diffusion and endocytosis process. Compared with monomer administration group, the intestinal absorption of C3, C4, DC1, and DC2 was significantly improved by co-existing components in MDQ-TS, and the non-absorbable saponins of C4, DC1, and DC2 unexpectedly showed sufficient intestinal permeability with Papp > 0.12 × 10-2 cm·min-1. This suggested that compounds orally administrated in TCM extract forms displayed unique intestinal absorption characteristics different from those of monomers, and the enhancing intestinal absorption of MDQ-TS reflected a holistic and specific view of traditional Chinese medicines (TCMs).


Asunto(s)
Cromatografía Liquida/métodos , Medicamentos Herbarios Chinos/química , Radio (Anatomía)/química , Saponinas/química , Animales , Medicamentos Herbarios Chinos/farmacología , Ácido Edético/farmacología , Glicósidos/química , Glicósidos/farmacología , Absorción Intestinal/efectos de los fármacos , Medicina Tradicional China , Ratas , Saponinas/farmacología
12.
Pharm Biol ; 55(1): 1177-1184, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28245362

RESUMEN

CONTEXT: Baicalin (BL) and baicalein (B) as the major flavonoids of Scutellaria baicalensis Georgi (Lamiaceae) have been investigated intensively, and shown to possess a multitude of pharmacological activities. OBJECTIVE: This study systematically evaluates the stability of BL and B in monomer and total flavonoid fraction (FSR) form in vitro, and further studies whether the protective measures are effective to make B and BL stable enough to meet the requirement of quantitative analysis in various biological samples. MATERIALS AND METHODS: The stability of BL and B was evaluated by investigating the influence factors such as pH (2.0, 3.0, 4.5, 6.8, 7.4 and 9.0), temperature (4, 25 and 40 °C), antioxidant (vitamin C and Na2SO3) and sunlight. After the protective measures were taken, stability of BL and B in plasma, urine and tissue homogenates was evaluated through post-preparative stability (stored at 4 °C for 24 h), three freeze-thaw cycles stability and long-term stability test (stored in refrigerator at -20 °C for 15 days). In addition, by comparing the degradation parameters of BL and B obtained from the monomer administration group with those of the FSR administration group, drug-drug interaction of coexistent components in FSR on the stability of BL and B was discussed. RESULTS: The degradation of BL and B was both pH- and temperature-dependent with their correlation coefficents for first-order kinetics equation larger than 0.99, and acidic environment (pH 2-4.5), lower temperature (<4 °C) and acidic antioxidant (e.g. vitamin C) were conducive to stabilize B and BL. Furthermore, coexistent components in FSR were proved to have function on inhibiting the degradation of BL and B in our study for the first time, which was characteristic of prolonging their biological half-life (t1/2) significantly, e.g., from 2.89 h to indefinite for BL (pH 6.8, 25 °C), from 2.63 h to 4.48 h for B (pH 6.8, 25 °C) and so on. Antioxidant of Na2SO3 could inhibit the degradation of BL with t1/2 increasing from 1.8 h to 3.5 h, but aggravate the bio-transformation of B with t1/2 decreasing from 0.92 h to 0.29 h. Our research proved that BL monomer, and BL and B in FSR form could be stabilized enough to meet the requirement of biological quantitative analysis under the protection of coexistent components in FSR. DISCUSSION AND CONCLUSION: The results obtained indicated that the stability of BL and B was affected not only by its environmental parameters, but also by the coexistent components in the effective total flavonoids fractions.


Asunto(s)
Flavanonas/química , Flavonoides/química , Extractos Vegetales/química , Scutellaria baicalensis , Animales , Líquidos Corporales/metabolismo , Estabilidad de Medicamentos , Flavanonas/metabolismo , Flavonoides/metabolismo , Concentración de Iones de Hidrógeno , Masculino , Extractos Vegetales/metabolismo , Ratas , Ratas Sprague-Dawley , Temperatura
13.
Fish Shellfish Immunol ; 43(1): 1-12, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25514376

RESUMEN

Toll-like receptor 8 (TLR8), a prototypical intracellular member of TLR family, is generally linked closely to antiviral innate immune through recognizing viral nucleic acid. In this study, 5'-flanking region of Ctenopharyngodon idella TLR8 (CiTLR8), 671bp in length, was amplified and eight SNPs containing one SNP in the intron, three SNPs in the coding region (CDS) and four SNPs in the 3'-untranslated region (UTR) were identified and characterized. Of which 4062 A/T was significantly associated with the susceptibility/resistance to GCRV both in genotype and allele (P < 0.05), while 4168 C/T was extremely significantly associated with that (P < 0.01) according to the case (susceptibility)-control (resistance) analysis. Following the verification experiment, further analyses of mRNA expression, linkage disequilibrium (LD), haplotype and microRNA (miRNA) target site indicated that 4062 A/T and 4168 C/T in 3'-UTR might affect the miRNA regulation, while the exertion of antiviral effects of 4062 A/T might rely on its interaction with other SNPs. Additionally, the high-density of SNPs in 3'-UTR might reflect the specific biological functions of 3'-UTR. And also, the mutation of 747 A/G in intron changing the potential transcriptional factor-binding sites (TFBS) nearby might affect the expression of CiTLR8 transcriptionally or post-transcriptionally. Moreover, as predicted, the A/G transition of the only non-synonymous SNP (3846 A/G) in CDS causing threonine/alanine variation, could shorten the length of the α-helix and ultimately affect the integrity of the Toll-IL-1 receptor (TIR) domain. The functional mechanism of 3846 A/G might also involve a threonine phosphorylation signaling. This study may broaden the knowledge of TLR polymorphisms, lay the foundation for further functional research of CiTLR8 and provide potential markers as well as theoretical basis for resistance molecular breeding of grass carp against GCRV.


Asunto(s)
Carpas , Enfermedades de los Peces/genética , Proteínas de Peces/genética , Haplotipos , Polimorfismo de Nucleótido Simple , Infecciones por Reoviridae/veterinaria , Receptor Toll-Like 8/genética , Animales , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Proteínas de Peces/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reoviridae/fisiología , Infecciones por Reoviridae/genética , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/virología , Receptor Toll-Like 8/metabolismo
14.
Fish Shellfish Immunol ; 40(1): 154-63, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24998981

RESUMEN

As an intracellular pattern recognition receptor (PRR), laboratory of genetics and physiology 2 (LGP2) plays a pivotal role in detecting nucleic acids of invading pathogens and simultaneously modulating signaling by retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) in type I interferon (IFN-I) pathway. Nevertheless, the underlying antiviral transcription mechanism of LGP2 remains obscure. The present study attempted to reveal the methylation levels of CiLGP2 (Ctenopharyngodon idella LGP2) in muscle and spleen of grass carp and their association with the resistance against grass carp reovirus (GCRV). By prediction, the CpG island was 133 bp in length in 5'-flanking region, containing six candidate CpG loci, whose methylation statuses were investigated by virtue of the bisulfite sequencing PCR (BSP) among muscle and spleen tissues in 120 individuals that were divided into resistant/susceptible groups after a challenge experiment, and the association analysis was performed with Chi-square test. Quantitative real-time RT-PCR (qRT-PCR) was employed to ascertain the interrelation between methylation status and transcription of CiLGP2. The CpG sites at -1394, -1366, -1331 and -1314 nt were identified as hypermethylated, inversely unmethylated at -1350 CpG site. The -1411 CpG site presented six methylation patterns as well as one mentionable type of mutation triggered by spontaneous deamination. Although there was no statistically significant difference on DNA methylation with resistance against GCRV at -1411 CpG site, the methylation levels were significantly lower in spleen than those in muscle, accompanied by higher mRNA expression of CiLGP2 in spleen. Notably, DNA methylation may be conceivably serve as an essential regulatory factor for CiLGP2 antiviral transcription in spleen. This research first demonstrated the relationship between DNA methylation and LGP2 gene expression, preliminary revealed the underlying transcription mechanism of CiLGP2 against GCRV as well as provided potential references and laid a theoretical foundation for viral recognition and regulation research of LGP2 in vertebrates.


Asunto(s)
Carpas , Metilación de ADN , Fosfatos de Dinucleósidos/genética , Enfermedades de los Peces/genética , Proteínas de Peces/genética , Infecciones por Reoviridae/veterinaria , Reoviridae/fisiología , Región de Flanqueo 5' , Animales , Secuencia de Bases , Fosfatos de Dinucleósidos/metabolismo , Susceptibilidad a Enfermedades/veterinaria , Susceptibilidad a Enfermedades/virología , Enfermedades de los Peces/virología , Proteínas de Peces/metabolismo , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/virología , Reacción en Cadena de la Polimerasa/veterinaria , Infecciones por Reoviridae/genética , Infecciones por Reoviridae/virología , Bazo/metabolismo , Bazo/virología , Transcripción Genética
15.
Exploration (Beijing) ; 3(4): 20220136, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37933235

RESUMEN

Oxaliplatin is a first-line chemotherapy drug widely adopted in colorectal cancer (CRC) treatment. However, a large proportion of patients tend to become resistant to oxaliplatin, causing chemotherapy to fail. At present, researches on oxaliplatin resistance mainly focus on the genetic and epigenetic alterations during cancer evolution, while the characteristics of high-order three-dimensional (3D) conformation of genome are yet to be explored. In order to investigate the chromatin conformation alteration during oxaliplatin resistance, we performed multi-omics study by combining DLO Hi-C, ChIP-seq as well as RNA-seq technologies on the established oxaliplatin-resistant cell line HCT116-OxR, as well as the control cell line HCT116. The results indicate that 19.33% of the genome regions have A/B compartments transformation after drug resistance, further analysis of the genes converted by A/B compartments reveals that the acquisition of oxaliplatin resistance in tumor cells is related to the reduction of reactive oxygen species and enhanced metastatic capacity. Our research reveals the spatial chromatin structural difference between CRC cells and oxaliplatin resistant cells based on the DLO Hi-C and other epigenetic omics experiments. More importantly, we provide potential targets for oxaliplatin-resistant cancer treatment and a new way to investigate drug resistance behavior under the perspective of 3D genome alteration.

16.
Cancer Lett ; 575: 216404, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37739210

RESUMEN

Elevated expression and genetic aberration of IRTKS, also named as BAIAP2L1, have been observed in many tumors, especially in tumor progression. however, the molecular and cellular mechanisms involved in the IRTKS-enhanced tumor progression are obscure. Here we show that higher IRTKS level specifically increases histone H3 lysine 9 trimethylation (H3K9me3) by promoting accumulation of the histone methyltransferase SETDB1. Furthermore, we reveal that IRTKS recruits the deubiquitinase OTUD4 to remove Lys48-linked polyubiquitination at K182/K1050 sites of SETDB1, thus blocking SETDB1 degradation via the ubiquitin-proteasome pathway. Interestingly, the enhanced IRTKS-OTUD4-SETDB1-H3K9me3 axis leads to a general decrease in chromatin accessibility, which inhibits transcription of CDH1 encoding E-cadherin, a key molecule essential for maintaining epithelial cell phenotype, and therefore results in epithelial-mesenchymal transition (EMT) and malignant cell metastasis. Clinically, the elevated IRTKS levels in tumor specimens correlate with SETDB1 levels, but negatively associate with survival time. Our data reveal a novel mechanism for the IRTKS-enhanced tumor progression, where IRTKS cooperates with OTUD4 to enhance SETDB1-mediated H3K9 trimethylation that promotes tumor metastasis via suppressing E-cadherin expression. This study also provides a potential approach to reduce the activity and stability of the known therapeutic target SETDB1 possibly through regulating IRTKS or deubiquitinase OTUD4.

17.
J Pharm Pharmacol ; 74(12): 1749-1757, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36206186

RESUMEN

OBJECTIVES: Triterpenoid saponins of Ilex pubescens (IPTS), the main active components of Ilex pubescens, has a therapeutic effect on atherosclerosis (AS). The ingredients in IPTS that could be intracellularly transported by human umbilical vein endothelial cells (HUVECs) may play an essential role in AS. This study attempted to explore its mechanism from the perspectives of HUVECs' inflammation, apoptosis, and autophagy. METHODS: By using a tumour necrosis factor-α (TNF-α)-induced HUVECs injury model, cell viability and the expression of intercellular adhesion molecule 1 (ICAM1), matrix metalloproteinase 9 (MMP9), cleave-caspase-3 and cleave-caspase-9, in combination with the results of flow cytometry, JC-1 and Hoechst 33258 staining were investigated to evaluate the anti-inflammatory and anti-apoptotic impact effects of IPTS on HUVECs. Afterwards, the expression of microtubule-associated proteins light chain 3II (LC3II) and sequestosome 1 (p62) was determined to test the effect of IPTS on autophagy. Finally, by adding an autophagy inhibitor 3-methyladenine (3-MA), we investigated whether IPTS exerts anti-inflammatory and anti-apoptotic effects through the autophagy pathway. KEY FINDINGS: We firstly demonstrated that pretreatment with IPTS could increase the cell viability, maintain the cell morphology and reduce TNF-α-induced inflammation and apoptosis of HUVECs. Moreover, IPTS pretreatment was proved to raise the expression of LC3II /LC3I while decreasing the expression of p62, which indicated that IPTS could activate HUVECs' autophagy. IPTS has been shown for the first time to exert anti-inflammatory and anti-apoptotic effects through autophagy and thereby resisting TNF-α-induced inflammatory injury of HUVECs. CONCLUSIONS: This study preliminarily confirmed that IPTS ameliorated HUVECs' inflammation and apoptosis by increasing autophagy.


Asunto(s)
Ilex , Saponinas , Triterpenos , Humanos , Antiinflamatorios/farmacología , Apoptosis , Autofagia , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Ilex/química , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Saponinas/farmacología , Triterpenos/farmacología , Factor de Necrosis Tumoral alfa/efectos adversos
18.
Oncogene ; 41(10): 1397-1409, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35017665

RESUMEN

Hepatocellular carcinoma (HCC) has emerged as the third cause of cancer-related death owing to lacking effective systemic therapies. Genomic DNA sequencing revealed the high frequency of loss-of-function mutations in ARID2, which encodes a subunit of SWI/SNF chromatin remodeling complex, however, the therapeutic strategy for the HCC patients with ARID2 mutations is still completely unclear. In this study, we first performed a high-throughput screening approach using a compound library consisting of 2 180 FDA-approved drugs and other compounds, to elicit the potential drugs for synthetic lethality to target ARID2-deficient HCC cells. Interestingly, JQ1, a selective inhibitor of bromodomain protein BRD4, uniquely suppressed the growth of ARID2- deficient HCC cells. Next JQ1 is further confirmed to predominantly induce cell lethality upon ARID2 depletion through exacerbating DNA damage, especially double strand breaks (DSBs). Functional assays demonstrated that both BRD4 inhibition and ARID2 deficiency synergistically impede two main DNA damage repair pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ), through attenuating the transcription of BRCA1, RAD51, and 53BP1, which encode the core molecules responsible for DSB repair. Mechanistically, both ARID2 and BRD4 exert a synergistic effect for maintaining transcriptional enhancer-promoter loops of these genes within chromatin conformation. However, as both ARID2 and BRD4 are disrupted, the expression of these DNA repair-related genes in response to DNA damage are hindered, resulting in DSB accumulation and cell apoptosis. Taken together, this study discloses that BRD4 inhibition may induce synthetic lethality in ARID2-deficient HCC cells, which might provide a potential therapeutic strategy for HCC patients with ARID2 mutations.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Daño del ADN , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutaciones Letales Sintéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Front Microbiol ; 13: 1034839, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439854

RESUMEN

Background: Obesity has become a global health and socioeconomic problem because of an inadequate balance between energy intake and energy expenditure. Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) are the two most commonly used strategies for weight loss, which have been proven to benefit from gut microbiota restoration. Methods: Rats received SG, RYGB, and sham operations for 10 weeks. At the end of the experiment, the fecal microbiota was analyzed using 16s rRNA gene sequencing. In addition, the shift in the plasma metabolism of rats that underwent RYGB surgery was analyzed using untargeted metabolomics. The crosstalk between microbiome and metabolites was revealed using metabolic pathway enrichment and integrated analysis. Result: The SG surgery induced a modest shift in the gut microbiota relative to the RYGB. RYGB significantly decreased the alpha diversity and Firmicutes/Bacteroides (F/B) ratio and increased the proportion of Escherichia, Bacteroides, and Akkermansia genera compared to sham and SG operations. The predicted function of gut microbiota revealed that the RYGB surgery uniquely enhanced the capability of linoleic acid and sphingolipid metabolism. Furthermore, the circulating serine, phosphatidylcholine (PC) 20:5/22:5, riboflavin, L-carnitine, and linoleic acid were evaluated after RYGB surgery. In addition, the metabolic pathway enrichment and integrated analysis suggest that the RYGB induced Escherichia, Bacteroides, and Akkermansia might inhibit the sphingonine and phytosphingosine metabolisms from serine and promote the PC (20:5/22:5) metabolism to produce linoleic acid. Conclusion: This comprehensive analysis not only revealed the difference in the gut microbiota shifts after SG and RYGB but also discovered the perturbative changes in microbial communities and metabolic pathways after RYGB surgery, which provided clues for improving the beneficial effect of RYGB in metabolic disease intervention via regulating bacterial-metabolite crosstalk.

20.
Cancer Lett ; 546: 215869, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35964817

RESUMEN

ARID1A, a key subunit of the SWI/SNF chromatin remodeling complex, exhibits recurrent mutations in various types of human cancers, including liver cancer. However, the function of ARID1A in the pathogenesis of liver cancer remains controversial. Here, we demonstrate that Arid1a knockout may result in states of different cell differentiation, as indicated by single-cell RNA sequencing (scRNA-seq) analysis. Bulk RNA-seq also revealed that Arid1a deficiency upregulated these genes related to cell stemness and differentiation, but downregulated genes related to the hepatic functions. Furthermore, we confirmed that deficiency of Arid1a increased the expression of hepatic stem/progenitor cell markers, such as Cd133 and Epcam, and enhanced the self-renewal ability of cells. Mechanistic studies revealed that Arid1a loss remodeled the chromatin accessibility of some genes related to liver functions. Thus, Arid1a deficiency might contribute to cancer development by increasing the number of stem/progenitor-like cells through dysregulating the expression of these genes related to cell stemness, differentiation and liver functions.


Asunto(s)
Neoplasias Hepáticas , Proteínas Nucleares , Cromatina , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN , Humanos , Células Madre , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA