Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 44(1): 157-168, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35655095

RESUMEN

Hepatic steatosis plays a detrimental role in the onset and progression of alcohol-associated liver disease (ALD). Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an evolutionarily conserved protein related to the unfolded protein response. Recent studies have demonstrated that MANF plays an important role in liver diseases. In this study, we investigated the role of MANF in ethanol-induced steatosis and the underlying mechanisms. We showed that the hepatic MANF expression was markedly upregulated in mouse model of ALD by chronic-plus-single-binge ethanol feeding. Moreover, after chronic-plus-binge ethanol feeding, hepatocyte-specific MANF knockout (HKO) mice displayed more severe hepatic steatosis and liver injury than wild-type (WT) control mice. Immunoprecipitation-coupled MS proteomic analysis revealed that arginosuccinate synthase 1 (ASS1), a rate-limiting enzyme in the urea cycle, resided in the same immunoprecipitated complex with MANF. Hepatocyte-specific MANF knockout led to decreased ASS1 activity, whereas overexpression of MANF contributed to enhanced ASS1 activity in vitro. In addition, HKO mice displayed unique urea cycle metabolite patterns in the liver with elevated ammonia accumulation after ethanol feeding. ASS1 is known to activate AMPK by generating an intracellular pool of AMP from the urea cycle. We also found that MANF supplementation significantly ameliorated ethanol-induced steatosis in vivo and in vitro by activating the AMPK signaling pathway, which was partly ASS1 dependent. This study demonstrates a new mechanism in which MANF acts as a key molecule in maintaining hepatic lipid homeostasis by enhancing ASS1 activity and uncovers an interesting link between lipid metabolism and the hepatic urea cycle under excessive alcohol exposure.


Asunto(s)
Hígado Graso , Hepatopatías Alcohólicas , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Astrocitos/metabolismo , Etanol/toxicidad , Hígado Graso/inducido químicamente , Hepatocitos/metabolismo , Hígado/metabolismo , Ratones Noqueados , Factores de Crecimiento Nervioso/metabolismo , Proteómica , Urea/metabolismo
2.
Phytomedicine ; 91: 153675, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34332285

RESUMEN

BACKGROUND: Xin-Ji-Er-Kang (XJEK) as a herbal formula of traditional Chinese medicine (TCM) has shown the protective effects on myocardial function as well as renal function in mouse models of myocardial infarction. HYPOTHESIS/PURPOSE: We investigated the effects of XJEK on cardiovascular- and renal-function in a heart failure mouse model induced by high salt (HS) and the associated mechanisms. STUDY DESIGN: For the purpose of assessing the effects of XJEK on a hypertensive heart failure model, mice were fed with 8% high salt diet. XJEK was administered by oral gavage for 8 weeks. Cardiovascular function parameters, renal function associated biomarkers and XJEK's impact on renin-angiotensin-aldosterone system (RAAS) activation were assessed. To determine the underlying mechanism, the calpain1/junctophilin-2 (JP2)/sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) pathway was further studied in AC16 cells after angiotensin II-challenge or after calpastatin small interfering RNA (siRNA) transfection. RESULTS: Mice on HS-diet exhibited hypertensive heart failure along with progressive kidney injury. Similar to fosinopril, XJEK ameliorated hypertension, cardiovascular-and renal- dysfunction in mice of HS-diet group. XJEK inhibited HS-induced activation of RAAS and reversed the abnormal expression pattern of calpain1and JP2 protein in heart tissues. XJEK significantly improved cell viability of angiotensin II-challenged AC16 cells. Moreover, XJEK's impact on calpain1/JP2 pathway was partly diminished in AC16 cells transfected with calpastatin siRNA. CONCLUSION: XJEK was found to exert cardiovascular- and renal protection in HS-diet induced heart failure mouse model. XJEK inhibited HS-diet induced RAAS activation by inhibiting the activity and expression of calpain1 and protected the junctional membrane complex (JMC) in cardiomyocytes.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Insuficiencia Cardíaca , Hipertensión , Animales , Presión Sanguínea , Calpaína , Insuficiencia Cardíaca/tratamiento farmacológico , Hipertensión/tratamiento farmacológico , Riñón/efectos de los fármacos , Riñón/fisiología , Proteínas de la Membrana , Ratones , Proteínas Musculares , Estrés Oxidativo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA