Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 184(23): 5728-5739.e16, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34644530

RESUMEN

The cyclic pyrimidines 3',5'-cyclic cytidine monophosphate (cCMP) and 3',5'-cyclic uridine monophosphate (cUMP) have been reported in multiple organisms and cell types. As opposed to the cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP), which are second messenger molecules with well-established regulatory roles across all domains of life, the biological role of cyclic pyrimidines has remained unclear. Here we report that cCMP and cUMP are second messengers functioning in bacterial immunity against viruses. We discovered a family of bacterial pyrimidine cyclase enzymes that specifically synthesize cCMP and cUMP following phage infection and demonstrate that these molecules activate immune effectors that execute an antiviral response. A crystal structure of a uridylate cyclase enzyme from this family explains the molecular mechanism of selectivity for pyrimidines as cyclization substrates. Defense systems encoding pyrimidine cyclases, denoted here Pycsar (pyrimidine cyclase system for antiphage resistance), are widespread in prokaryotes. Our results assign clear biological function to cCMP and cUMP as immunity signaling molecules in bacteria.


Asunto(s)
Bacterias/inmunología , Bacterias/virología , Bacteriófagos/fisiología , CMP Cíclico/metabolismo , Nucleótidos Cíclicos/metabolismo , Uridina Monofosfato/metabolismo , Secuencia de Aminoácidos , Bacterias/genética , Burkholderia/enzimología , CMP Cíclico/química , Ciclización , Escherichia coli/enzimología , Modelos Moleculares , Mutación/genética , Nucleótidos Cíclicos/química , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/metabolismo , Pirimidinas/metabolismo , Uridina Monofosfato/química
2.
Cell ; 182(1): 38-49.e17, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32544385

RESUMEN

cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzymes are immune sensors that synthesize nucleotide second messengers and initiate antiviral responses in bacterial and animal cells. Here, we discover Enterobacter cloacae CD-NTase-associated protein 4 (Cap4) as a founding member of a diverse family of >2,000 bacterial receptors that respond to CD-NTase signals. Structures of Cap4 reveal a promiscuous DNA endonuclease domain activated through ligand-induced oligomerization. Oligonucleotide recognition occurs through an appended SAVED domain that is an unexpected fusion of two CRISPR-associated Rossman fold (CARF) subunits co-opted from type III CRISPR immunity. Like a lock and key, SAVED effectors exquisitely discriminate 2'-5'- and 3'-5'-linked bacterial cyclic oligonucleotide signals and enable specific recognition of at least 180 potential nucleotide second messenger species. Our results reveal SAVED CARF family proteins as major nucleotide second messenger receptors in CBASS and CRISPR immune defense and extend the importance of linkage specificity beyond mammalian cGAS-STING signaling.


Asunto(s)
Bacterias/virología , Bacteriófagos/metabolismo , Sistemas CRISPR-Cas , Inmunidad , Oligonucleótidos/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Desoxirribonucleasa I/metabolismo , Ligandos , Mutagénesis/genética , Nucleotidiltransferasas/metabolismo , Unión Proteica , Sistemas de Mensajero Secundario
3.
Cell ; 175(6): 1507-1519.e16, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30415835

RESUMEN

Mammals encode ∼5,000 integral membrane proteins that need to be inserted in a defined topology at the endoplasmic reticulum (ER) membrane by mechanisms that are incompletely understood. Here, we found that efficient biogenesis of ß1-adrenergic receptor (ß1AR) and other G protein-coupled receptors (GPCRs) requires the conserved ER membrane protein complex (EMC). Reconstitution studies of ß1AR biogenesis narrowed the EMC requirement to the co-translational insertion of the first transmembrane domain (TMD). Without EMC, a proportion of TMD1 inserted in an inverted orientation or failed altogether. Purified EMC and SRP receptor were sufficient for correctly oriented TMD1 insertion, while the Sec61 translocon was necessary for insertion of the next TMD. Enforcing TMD1 topology with an N-terminal signal peptide bypassed the EMC requirement for insertion in vitro and restored efficient biogenesis of multiple GPCRs in EMC-knockout cells. Thus, EMC inserts TMDs co-translationally and cooperates with the Sec61 translocon to ensure accurate topogenesis of many membrane proteins.


Asunto(s)
Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Canales de Translocación SEC/metabolismo , Animales , Línea Celular Tumoral , Retículo Endoplásmico/genética , Femenino , Humanos , Dominios Proteicos , Transporte de Proteínas/fisiología , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Péptidos/genética , Canales de Translocación SEC/genética , Pavos
4.
Cell ; 167(5): 1229-1240.e15, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863242

RESUMEN

In eukaryotes, accurate protein synthesis relies on a family of translational GTPases that pair with specific decoding factors to decipher the mRNA code on ribosomes. We present structures of the mammalian ribosome engaged with decoding factor⋅GTPase complexes representing intermediates of translation elongation (aminoacyl-tRNA⋅eEF1A), termination (eRF1⋅eRF3), and ribosome rescue (Pelota⋅Hbs1l). Comparative analyses reveal that each decoding factor exploits the plasticity of the ribosomal decoding center to differentially remodel ribosomal proteins and rRNA. This leads to varying degrees of large-scale ribosome movements and implies distinct mechanisms for communicating information from the decoding center to each GTPase. Additional structural snapshots of the translation termination pathway reveal the conformational changes that choreograph the accommodation of decoding factors into the peptidyl transferase center. Our results provide a structural framework for how different states of the mammalian ribosome are selectively recognized by the appropriate decoding factor⋅GTPase complex to ensure translational fidelity.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/química , Ribosomas/química , Animales , Microscopía por Crioelectrón , Endonucleasas , Humanos , Proteínas de Microfilamentos/metabolismo , Modelos Químicos , Modelos Moleculares , Proteínas Nucleares , Factores de Elongación de Péptidos/metabolismo , Ribosomas/ultraestructura
5.
Mol Cell ; 82(22): 4277-4289.e10, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36283413

RESUMEN

The biosynthesis of thousands of proteins requires targeting a signal sequence or transmembrane segment (TM) to the endoplasmic reticulum (ER). These hydrophobic ɑ helices must localize to the appropriate cellular membrane and integrate in the correct topology to maintain a high-fidelity proteome. Here, we show that the P5A-ATPase ATP13A1 prevents the accumulation of mislocalized and misoriented proteins, which are eliminated by different ER-associated degradation (ERAD) pathways in mammalian cells. Without ATP13A1, mitochondrial tail-anchored proteins mislocalize to the ER through the ER membrane protein complex and are cleaved by signal peptide peptidase for ERAD. ATP13A1 also facilitates the topogenesis of a subset of proteins with an N-terminal TM or signal sequence that should insert into the ER membrane with a cytosolic N terminus. Without ATP13A1, such proteins accumulate in the wrong orientation and are targeted for ERAD by distinct ubiquitin ligases. Thus, ATP13A1 prevents ERAD of diverse proteins capable of proper folding.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Proteínas de la Membrana , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Retículo Endoplásmico/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Señales de Clasificación de Proteína , Pliegue de Proteína , Mamíferos/metabolismo
6.
Nature ; 608(7924): 803-807, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35859168

RESUMEN

Stimulator of interferon genes (STING) is an antiviral signalling protein that is broadly conserved in both innate immunity in animals and phage defence in prokaryotes1-4. Activation of STING requires its assembly into an oligomeric filament structure through binding of a cyclic dinucleotide4-13, but the molecular basis of STING filament assembly and extension remains unknown. Here we use cryogenic electron microscopy to determine the structure of the active Toll/interleukin-1 receptor (TIR)-STING filament complex from a Sphingobacterium faecium cyclic-oligonucleotide-based antiphage signalling system (CBASS) defence operon. Bacterial TIR-STING filament formation is driven by STING interfaces that become exposed on high-affinity recognition of the cognate cyclic dinucleotide signal c-di-GMP. Repeating dimeric STING units stack laterally head-to-head through surface interfaces, which are also essential for human STING tetramer formation and downstream immune signalling in mammals5. The active bacterial TIR-STING structure reveals further cross-filament contacts that brace the assembly and coordinate packing of the associated TIR NADase effector domains at the base of the filament to drive NAD+ hydrolysis. STING interface and cross-filament contacts are essential for cell growth arrest in vivo and reveal a stepwise mechanism of activation whereby STING filament assembly is required for subsequent effector activation. Our results define the structural basis of STING filament formation in prokaryotic antiviral signalling.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Proteínas de la Membrana , Receptores de Interleucina-1 , Sphingobacterium , Receptores Toll-Like , Animales , Antivirales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Bacteriófagos/inmunología , Fosfatos de Dinucleósidos/metabolismo , Humanos , Inmunidad Innata , Proteínas de la Membrana/química , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Operón/genética , Receptores de Interleucina-1/química , Receptores de Interleucina-1/inmunología , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/ultraestructura , Sphingobacterium/química , Sphingobacterium/genética , Sphingobacterium/ultraestructura , Sphingobacterium/virología , Receptores Toll-Like/química , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Receptores Toll-Like/ultraestructura
7.
Trends Biochem Sci ; 47(9): 730-731, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35501234

RESUMEN

The signal recognition particle (SRP) cotranslationally targets a large and diverse portion of the nascent proteome to the endoplasmic reticulum (ER). A recent study by Jomaa et al. reveals an unexpected function for the ribosome-bound nascent chain-associated complex (NAC) in sensing ER-targeting signals and recruiting SRP to the appropriate ribosomes for high-fidelity targeting.


Asunto(s)
Retículo Endoplásmico , Partícula de Reconocimiento de Señal , Retículo Endoplásmico/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/metabolismo
8.
Nat Chem Biol ; 20(7): 877-884, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38172604

RESUMEN

Translation termination is an essential cellular process, which is also of therapeutic interest for diseases that manifest from premature stop codons. In eukaryotes, translation termination requires eRF1, which recognizes stop codons, catalyzes the release of nascent proteins from ribosomes and facilitates ribosome recycling. The small molecule SRI-41315 triggers eRF1 degradation and enhances translational readthrough of premature stop codons. However, the mechanism of action of SRI-41315 on eRF1 and translation is not known. Here we report cryo-EM structures showing that SRI-41315 acts as a metal-dependent molecular glue between the N domain of eRF1 responsible for stop codon recognition and the ribosomal subunit interface near the decoding center. Retention of eRF1 on ribosomes by SRI-41315 leads to ribosome collisions, eRF1 ubiquitylation and a higher frequency of translation termination at near-cognate stop codons. Our findings reveal a new mechanism of release factor inhibition and additional implications for pharmacologically targeting eRF1.


Asunto(s)
Codón de Terminación , Factores de Terminación de Péptidos , Ribosomas , Factores de Terminación de Péptidos/metabolismo , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/química , Ribosomas/metabolismo , Ribosomas/genética , Humanos , Codón de Terminación/genética , Microscopía por Crioelectrón , Ubiquitinación , Terminación de la Cadena Péptídica Traduccional , Modelos Moleculares , Biosíntesis de Proteínas
9.
Cell ; 146(1): 13-5, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21729778

RESUMEN

The transmembrane domains in a membrane protein must be recognized and correctly oriented before their insertion into the lipid bilayer. Devaraneni et al. (2011) generate snapshots at different stages of membrane protein biogenesis, revealing a dynamic set of steps that imply an unexpectedly flexible membrane insertion machinery.

10.
Cell ; 147(7): 1576-88, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22196732

RESUMEN

Metazoans secrete an extensive array of small proteins essential for intercellular communication, defense, and physiologic regulation. Their synthesis takes mere seconds, leaving minimal time for recognition by the machinery for cotranslational protein translocation into the ER. The pathway taken by these substrates to enter the ER is not known. Here, we show that both in vivo and in vitro, small secretory proteins can enter the ER posttranslationally via a transient cytosolic intermediate. This intermediate contained calmodulin selectively bound to the signal peptides of small secretory proteins. Calmodulin maintained the translocation competence of small-protein precursors, precluded their aggregation and degradation, and minimized their inappropriate interactions with other cytosolic polypeptide-binding proteins. Acute inhibition of calmodulin specifically impaired small-protein translocation in vitro and in cells. These findings establish a mammalian posttranslational pathway for small-protein secretion and identify an unexpected role for calmodulin in chaperoning these precursors safely through the cytosol.


Asunto(s)
Calmodulina/metabolismo , Proteínas/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Células HeLa , Humanos , Redes y Vías Metabólicas , Prolactina/química , Prolactina/metabolismo , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteínas/química , Levaduras/metabolismo
11.
Nature ; 586(7829): 429-433, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32877915

RESUMEN

Stimulator of interferon genes (STING) is a receptor in human cells that senses foreign cyclic dinucleotides that are released during bacterial infection and in endogenous cyclic GMP-AMP signalling during viral infection and anti-tumour immunity1-5. STING shares no structural homology with other known signalling proteins6-9, which has limited attempts at functional analysis and prevented explanation of the origin of cyclic dinucleotide signalling in mammalian innate immunity. Here we reveal functional STING homologues encoded within prokaryotic defence islands, as well as a conserved mechanism of signal activation. Crystal structures of bacterial STING define a minimal homodimeric scaffold that selectively responds to cyclic di-GMP synthesized by a neighbouring cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzyme. Bacterial STING domains couple the recognition of cyclic dinucleotides with the formation of protein filaments to drive oligomerization of TIR effector domains and rapid NAD+ cleavage. We reconstruct the evolutionary events that followed the acquisition of STING into metazoan innate immunity, and determine the structure of a full-length TIR-STING fusion from the Pacific oyster Crassostrea gigas. Comparative structural analysis demonstrates how metazoan-specific additions to the core STING scaffold enabled a switch from direct effector function to regulation of antiviral transcription. Together, our results explain the mechanism of STING-dependent signalling and reveal the conservation of a functional cGAS-STING pathway in prokaryotic defence against bacteriophages.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Evolución Molecular , Proteínas de la Membrana , Sistemas de Mensajero Secundario , Animales , Bacterias/química , Bacterias/virología , Proteínas Bacterianas/química , Bacteriófagos , Cristalografía por Rayos X , GMP Cíclico/metabolismo , Proteínas de la Membrana/química , Modelos Moleculares , NAD/metabolismo , Nucleotidiltransferasas/metabolismo
12.
Trends Biochem Sci ; 46(9): 731-743, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33966939

RESUMEN

Ribosomes that stall inappropriately during protein synthesis harbor proteotoxic components linked to cellular stress and neurodegenerative diseases. Molecular mechanisms that rescue stalled ribosomes must selectively detect rare aberrant translational complexes and process the heterogeneous components. Ribosome-associated quality control pathways eliminate problematic messenger RNAs and nascent proteins on stalled translational complexes. In addition, recent studies have uncovered general principles of stall recognition upstream of quality control pathways and fail-safe mechanisms that ensure nascent proteome integrity. Here, we discuss developments in our mechanistic understanding of the detection and rescue of stalled ribosomal complexes in eukaryotes.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo
13.
Annu Rev Cell Dev Biol ; 27: 25-56, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21801011

RESUMEN

Integral membrane proteins of the cell surface and most intracellular compartments of eukaryotic cells are assembled at the endoplasmic reticulum. Two highly conserved and parallel pathways mediate membrane protein targeting to and insertion into this organelle. The classical cotranslational pathway, utilized by most membrane proteins, involves targeting by the signal recognition particle followed by insertion via the Sec61 translocon. A more specialized posttranslational pathway, employed by many tail-anchored membrane proteins, is composed of entirely different factors centered around a cytosolic ATPase termed TRC40 or Get3. Both of these pathways overcome the same biophysical challenges of ferrying hydrophobic cargo through an aqueous milieu, selectively delivering it to one among several intracellular membranes and asymmetrically integrating its transmembrane domain(s) into the lipid bilayer. Here, we review the conceptual and mechanistic themes underlying these core membrane protein insertion pathways, the complexities that challenge our understanding, and future directions to overcome these obstacles.


Asunto(s)
Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Retículo Endoplásmico/química , Retículo Endoplásmico/ultraestructura , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Membranas Intracelulares/química , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Conformación Proteica , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Canales de Translocación SEC , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/metabolismo
14.
Mol Cell ; 63(1): 21-33, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27345149

RESUMEN

We investigated how mitochondrial membrane proteins remain soluble in the cytosol until their delivery to mitochondria or degradation at the proteasome. We show that Ubiquilin family proteins bind transmembrane domains in the cytosol to prevent aggregation and temporarily allow opportunities for membrane targeting. Over time, Ubiquilins recruit an E3 ligase to ubiquitinate bound clients. The attached ubiquitin engages Ubiquilin's UBA domain, normally bound to an intramolecular UBL domain, and stabilizes the Ubiquilin-client complex. This conformational change precludes additional chances at membrane targeting for the client, while simultaneously freeing Ubiquilin's UBL domain for targeting to the proteasome. Loss of Ubiquilins by genetic ablation or sequestration in polyglutamine aggregates leads to accumulation of non-inserted mitochondrial membrane protein precursors. These findings define Ubiquilins as a family of chaperones for cytosolically exposed transmembrane domains and explain how they use ubiquitin to triage clients for degradation via coordinated intra- and intermolecular interactions.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Proteolisis , Ubiquitinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Relacionadas con la Autofagia , Sistemas CRISPR-Cas , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Citosol/metabolismo , Células HEK293 , Células HeLa , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Péptidos/metabolismo , Agregado de Proteínas , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , Relación Estructura-Actividad , Transfección , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitinas/química , Ubiquitinas/genética
15.
Mol Cell ; 57(3): 433-44, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25578875

RESUMEN

During ribosome-associated quality control, stalled ribosomes are split into subunits and the 60S-housed nascent polypeptides are poly-ubiquitinated by Listerin. How this low-abundance ubiquitin ligase targets rare stall-generated 60S among numerous empty 60S is unknown. Here, we show that Listerin specificity for nascent chain-60S complexes depends on nuclear export mediator factor (NEMF). The 3.6 Å cryo-EM structure of a nascent chain-containing 60S-Listerin-NEMF complex revealed that NEMF makes multiple simultaneous contacts with 60S and peptidyl-tRNA to sense nascent chain occupancy. Structural and mutational analyses showed that ribosome-bound NEMF recruits and stabilizes Listerin's N-terminal domain, while Listerin's C-terminal RWD domain directly contacts the ribosome to position the adjacent ligase domain near the nascent polypeptide exit tunnel. Thus, highly specific nascent chain targeting by Listerin is imparted by the avidity gained from a multivalent network of context-specific individually weak interactions, highlighting a new principle of client recognition during protein quality control.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Aminoacil-ARN de Transferencia/química , Ribosomas/química , Ubiquitina-Proteína Ligasas/metabolismo , Antígenos de Neoplasias/química , Sitios de Unión , Microscopía por Crioelectrón , Células HEK293 , Humanos , Modelos Moleculares , Conformación Molecular , Proteínas de Transporte Nucleocitoplasmático/química , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitinación
16.
Mol Cell ; 55(6): 880-890, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25132172

RESUMEN

Ribosomes stalled on aberrant mRNAs engage quality control mechanisms that degrade the partially translated nascent polypeptide. Ubiquitination of the nascent protein is mediated by the E3 ligase Listerin via a mechanism involving ribosome subunit dissociation. Here, we reconstitute ribosome-associated ubiquitination with purified factors to define the minimal components and essential steps in this process. We find that the primary role of the ribosome splitting factors Hbs1, Pelota, and ABCE1 is to permit Listerin access to the nascent chain. Listerin alone can discriminate 60S- from 80S-nascent chain complexes to selectively ubiquitinate the former. Splitting factors can be bypassed by artificially removing the 40S subunit, suggesting that mere steric hindrance impedes Listerin recruitment. This was illustrated by a cryo-EM reconstruction of the 60S-Listerin complex that identifies a binding interface that clashes with the 40S ribosomal subunit. These results reveal the mechanistic logic of the core steps in a ribosome-associated quality control pathway.


Asunto(s)
Subunidades Ribosómicas/metabolismo , Ubiquitinación , Transportadoras de Casetes de Unión a ATP/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Células HEK293 , Humanos , Proteínas de Microfilamentos/metabolismo , Modelos Moleculares , Factores de Elongación de Péptidos/metabolismo , ARN Ribosómico/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
17.
Proc Natl Acad Sci U S A ; 116(11): 4946-4954, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30804176

RESUMEN

Cells dynamically adjust their protein translation profile to maintain homeostasis in changing environments. During nutrient stress, the kinase general control nonderepressible 2 (GCN2) phosphorylates translation initiation factor eIF2α, initiating the integrated stress response (ISR). To examine the mechanism of GCN2 activation, we have reconstituted this process in vitro, using purified components. We find that recombinant human GCN2 is potently stimulated by ribosomes and, to a lesser extent, by tRNA. Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) mapped GCN2-ribosome interactions to domain II of the uL10 subunit of the ribosomal P-stalk. Using recombinant, purified P-stalk, we showed that this domain of uL10 is the principal component of binding to GCN2; however, the conserved 14-residue C-terminal tails (CTTs) in the P1 and P2 P-stalk proteins are also essential for GCN2 activation. The HisRS-like and kinase domains of GCN2 show conformational changes upon binding recombinant P-stalk complex. Given that the ribosomal P-stalk stimulates the GTPase activity of elongation factors during translation, we propose that the P-stalk could link GCN2 activation to translational stress, leading to initiation of ISR.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Ribosomas/metabolismo , Secuencias de Aminoácidos , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Fosforilación , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Relación Estructura-Actividad
18.
J Am Chem Soc ; 143(34): 13473-13477, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34403584

RESUMEN

Employed for over half a century to study protein synthesis, cycloheximide (CHX, 1) is a small molecule natural product that reversibly inhibits translation elongation. More recently, CHX has been applied to ribosome profiling, a method for mapping ribosome positions on mRNA genome-wide. Despite CHX's extensive use, CHX treatment often results in incomplete translation inhibition due to its rapid reversibility, prompting the need for improved reagents. Here, we report the concise synthesis of C13-amide-functionalized CHX derivatives with increased potencies toward protein synthesis inhibition. Cryogenic electron microscopy (cryo-EM) revealed that C13-aminobenzoyl CHX (8) occupies the same site as CHX, competing with the 3' end of E-site tRNA. We demonstrate that 8 is superior to CHX for ribosome profiling experiments, enabling more effective capture of ribosome conformations through sustained stabilization of polysomes. Our studies identify powerful chemical reagents to study protein synthesis and reveal the molecular basis of their enhanced potency.


Asunto(s)
Productos Biológicos/farmacología , Cicloheximida/análogos & derivados , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Amidas/química , Productos Biológicos/química , Cicloheximida/metabolismo , Cicloheximida/farmacología , Células HEK293 , Humanos , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
19.
Nature ; 524(7566): 493-496, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26245381

RESUMEN

Termination of protein synthesis occurs when a translating ribosome encounters one of three universally conserved stop codons: UAA, UAG or UGA. Release factors recognize stop codons in the ribosomal A-site to mediate release of the nascent chain and recycling of the ribosome. Bacteria decode stop codons using two separate release factors with differing specificities for the second and third bases. By contrast, eukaryotes rely on an evolutionarily unrelated omnipotent release factor (eRF1) to recognize all three stop codons. The molecular basis of eRF1 discrimination for stop codons over sense codons is not known. Here we present cryo-electron microscopy (cryo-EM) structures at 3.5-3.8 Å resolution of mammalian ribosomal complexes containing eRF1 interacting with each of the three stop codons in the A-site. Binding of eRF1 flips nucleotide A1825 of 18S ribosomal RNA so that it stacks on the second and third stop codon bases. This configuration pulls the fourth position base into the A-site, where it is stabilized by stacking against G626 of 18S rRNA. Thus, eRF1 exploits two rRNA nucleotides also used during transfer RNA selection to drive messenger RNA compaction. In this compacted mRNA conformation, stop codons are favoured by a hydrogen-bonding network formed between rRNA and essential eRF1 residues that constrains the identity of the bases. These results provide a molecular framework for eukaryotic stop codon recognition and have implications for future studies on the mechanisms of canonical and premature translation termination.


Asunto(s)
Codón de Terminación/química , Codón de Terminación/metabolismo , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Codón/química , Codón/genética , Codón/metabolismo , Codón de Terminación/genética , Microscopía por Crioelectrón , Eucariontes , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico , Nucleótidos/química , Nucleótidos/metabolismo , Biosíntesis de Proteínas , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 18S/genética , Ribosomas/química , Ribosomas/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
20.
Mol Cell ; 50(5): 637-48, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23685075

RESUMEN

Quality control of defective mRNAs relies on their translation to detect the lesion. Aberrant proteins are therefore an obligate byproduct of mRNA surveillance and must be degraded to avoid disrupting protein homeostasis. These defective translation products are thought to be ubiquitinated at the ribosome, but the mechanism of ubiquitin ligase selectivity for these ribosomes is not clear. Here, we in vitro reconstitute ubiquitination of nascent proteins produced from aberrant mRNAs. Stalled 80S ribosome-nascent chain complexes are dissociated by the ribosome recycling factors Hbs1/Pelota/ABCE1 to a unique 60S-nascent chain-tRNA complex. The ubiquitin ligase Listerin preferentially recognizes 60S-nascent chains and triggers efficient nascent chain ubiquitination. Interfering with Hbs1 function stabilizes 80S complexes, precludes efficient Listerin recruitment, and reduces nascent chain ubiquitination. Thus, ribosome recycling factors control Listerin localization, explaining how translation products of mRNA surveillance are efficiently ubiquitinated while sparing translating ribosomes.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Sistema Libre de Células , Endonucleasas , GTP Fosfohidrolasas/genética , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Nucleares , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA