Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 4099, 2023 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-36907909

RESUMEN

Airborne transmission by droplets and aerosols is known to play a critical role in the spread of many viruses amongst which are the common flu and the more recent SARS-CoV-2 viruses. In the case of SARS-CoV-2, the nasal cavity not only constitutes an important viral entry point, but also a primary site of infection (Sungnak W. et al. Nat. Med. 26:681-687. https://doi.org/10.1038/s41591-020-0868-6 , 2020).. Although face masks are a well-established preventive measure, development of novel and easy-to-use prophylactic measures would be highly beneficial in fighting viral spread and the subsequent emergence of variants of concern (Tao K. et al. Nat Rev Genet 22:757-773. https://doi.org/10.1038/s41576-021-00408-x , 2021). Our group has been working on optimizing a nasal spray delivery system that deposits particles inside the susceptible regions of the nasal cavity to act as a mechanical barrier to impede viral entry. Here, we identify computationally the delivery parameters that maximize the protection offered by this barrier. We introduce the computational approach and quantify the protection rate obtained as a function of a broad range of delivery parameters. We also introduce a modified design and demonstrate that it significantly improves deposition, thus constituting a viable approach to protect against nasal infection of airborne viruses. We then discuss our findings and the implications of this novel system on the prevention of respiratory diseases and targeted drug delivery.


Asunto(s)
COVID-19 , Rociadores Nasales , Humanos , SARS-CoV-2 , Aerosoles y Gotitas Respiratorias , Cavidad Nasal
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7497-7501, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892827

RESUMEN

In this paper, a minimally invasive wireless powered electronic lens (e-lens) with passive electrodes is presented for an ocular electrical stimulation. Previous research has focused on the differentiation property of the induction phenomenon and half wave rectifiers. However, these approaches are generally application specific, non efficient, suitable for low current, and deliver monophasic current stimulation. Existing rectifier-based techniques can lead to safety concerns as the offset voltage could change unpredictably. A new wireless power transfer circuit is presented for the design of an efficient system to wirelessly deliver charge-balanced biphasic waveforms through passive electrodes for transcorneal electrical stimulation. The absence of active components allows the development of a flexible e-lens system for therapeutic electrical stimulation of the eye.


Asunto(s)
Tecnología Inalámbrica , Estimulación Eléctrica , Electrodos , Diseño de Equipo
3.
Front Neurosci ; 15: 616063, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716647

RESUMEN

Same-electrode stimulation and recording with high spatial resolution, signal quality, and power efficiency is highly desirable in neuroscience and neural engineering. High spatial resolution and signal-to-noise ratio is necessary for obtaining unitary activities and delivering focal stimulations. Power efficiency is critical for battery-operated implantable neural interfaces. This study demonstrates the capability of recording single units as well as evoked potentials in response to a wide range of electrochemically safe stimulation pulses through high-resolution microelectrodes coated with co-deposition of Pt-Ir. It also compares signal-to-noise ratio, single unit activity, and power efficiencies between Pt-Ir coated and uncoated microelectrodes. To enable stimulation and recording with the same microelectrodes, microelectrode arrays were treated with electrodeposited platinum-iridium coating (EPIC) and tested in the CA1 cell body layer of rat hippocampi. The electrodes' ability to (1) inject a large range of electrochemically reversable stimulation pulses to the tissue, and (2) record evoked potentials and single unit activities were quantitively assessed over an acute time period. Compared to uncoated electrodes, EPIC electrodes recorded signals with higher signal-to-noise ratios (coated: 9.77 ± 1.95 dB; uncoated: 1.95 ± 0.40 dB) and generated lower voltages (coated: 100 mV; uncoated: 650 mV) for a given stimulus (5 µA). The improved performance corresponded to lower energy consumptions and electrochemically safe stimulation above 5 µA (>0.38 mC/cm2), which enabled elicitation of field excitatory post synaptic potentials and population spikes. Spontaneous single unit activities were also modulated by varying stimulation intensities and monitored through the same electrodes. This work represents an example of stimulation and recording single unit activities from the same microelectrode, which provides a powerful tool for monitoring and manipulating neural circuits at the single neuron level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA