Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chaos ; 30(7): 073104, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32752648

RESUMEN

Stationary periodic patterns are widespread in natural sciences, ranging from nano-scale electrochemical and amphiphilic systems to mesoscale fluid, chemical, and biological media and to macro-scale vegetation and cloud patterns. Their formation is usually due to a primary symmetry breaking of a uniform state to stripes, often followed by secondary instabilities to form zigzag and labyrinthine patterns. These secondary instabilities are well studied under idealized conditions of an infinite domain; however, on finite domains, the situation is more subtle since the unstable modes depend also on boundary conditions. Using two prototypical models, the Swift-Hohenberg equation and the forced complex Ginzburg-Landau equation, we consider finite size domains with no flux boundary conditions transversal to the stripes and reveal a distinct mixed-mode instability that lies in between the classical zigzag and the Eckhaus lines. This explains the stability of stripes in the mildly zigzag unstable regime and, after crossing the mixed-mode line, the evolution of zigzag stripes in the bulk of the domain and the formation of defects near the boundaries. The results are of particular importance for problems with large timescale separation, such as bulk-heterojunction deformations in organic photovoltaic and vegetation in semi-arid regions, where early temporal transients may play an important role.

2.
Phys Rev E ; 102(6-1): 062213, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33466059

RESUMEN

Optimizing the properties of the mosaic nanoscale morphology of bulk heterojunction (BHJ) organic photovoltaics (OPV) is not only challenging technologically but also intriguing from the mechanistic point of view. Among the recent breakthroughs is the identification and utilization of a three-phase (donor-mixed-acceptor) BHJ, where the (intermediate) mixed phase can inhibit mesoscale morphological changes, such as phase separation. Using a mean-field approach, we reveal and distinguish between generic mechanisms that alter, through transverse instabilities, the evolution of stripes: the bending (zigzag mode) and the pinching (cross-roll mode) of the donor-acceptor domains. The results are summarized in a parameter plane spanned by the mixing energy and illumination, and show that donor-acceptor mixtures with higher mixing energy are more likely to develop pinching under charge-flux boundary conditions. The latter is notorious as it leads to the formation of disconnected domains and hence to loss of charge flux. We believe that these results provide a qualitative road map for BHJ optimization, using mixed-phase composition and, therefore, an essential step toward long-lasting OPV. More broadly, the results are also of relevance to study the coexistence of multiple-phase domains in material science, such as in ion-intercalated rechargeable batteries.

3.
Nat Commun ; 9(1): 5435, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30575733

RESUMEN

Cellular senescence is a stress response that imposes stable cell-cycle arrest in damaged cells, preventing their propagation in tissues. However, senescent cells accumulate in tissues in advanced age, where they might promote tissue degeneration and malignant transformation. The extent of immune-system involvement in regulating age-related accumulation of senescent cells, and its consequences, are unknown. Here we show that Prf1-/- mice with impaired cell cytotoxicity exhibit both higher senescent-cell tissue burden and chronic inflammation. They suffer from multiple age-related disorders and lower survival. Strikingly, pharmacological elimination of senescent-cells by ABT-737 partially alleviates accelerated aging phenotype in these mice. In LMNA+/G609G progeroid mice, impaired cell cytotoxicity further promotes senescent-cell accumulation and shortens lifespan. ABT-737 administration during the second half of life of these progeroid mice abrogates senescence signature and increases median survival. Our findings shed new light on mechanisms governing senescent-cell presence in aging, and could motivate new strategies for regenerative medicine.


Asunto(s)
Senescencia Celular , Inmunosenescencia , Perforina/fisiología , Animales , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Evaluación Preclínica de Medicamentos , Femenino , Inflamación/etiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Nitrofenoles/farmacología , Nitrofenoles/uso terapéutico , Piperazinas/farmacología , Piperazinas/uso terapéutico , Progeria/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico
4.
PLoS One ; 12(12): e0187520, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29240758

RESUMEN

Collinear facilitation of contrast sensitivity supported by lateral interactions within primary visual cortex is implicated in contour and object perception, with neural correlates in several frequency bands. Although higher component of the ERP power spectrum, the gamma-band, is postulated to reflect object representation, attention and memory, its neuronal source has been questioned, suggesting it is an artifact reflecting saccadic eye movements. Here we explored the gamma-band activity during collinear facilitation with no saccade-related confounds. We used single-trial spectral analysis of ERP in occipital channels in a time-window of nearly complete saccadic suppression and discarded sporadic trials containing saccades, in order to avoid saccadic artifacts. Although converging evidence suggests that gamma-band oscillations emerge from local excitatory-inhibitory balance involving GABAergic inhibition, here we show activity amplification during facilitatory collinear interactions, presumably dominated by excitations, in the gamma-band 150-350 milliseconds following onset of low near-threshold contrast stimulus. This result highlights the potential role of gamma-band oscillations in neuronal encoding of basic processes in visual perception. Thus, our findings suggest that gamma-band ERP spectrum analysis may serve as a useful and reliable tool for exploring basic perception, both in normal adults and in special populations.


Asunto(s)
Potenciales Evocados , Sensibilidad de Contraste , Movimientos Oculares , Humanos
5.
Biomed Opt Express ; 3(5): 991-1005, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22567592

RESUMEN

Diagnosis of malaria must be rapid, accurate, simple to use, portable and low cost, as suggested by the World Health Organization (WHO). Despite recent efforts, the gold standard remains the light microscopy of a stained blood film. This method can detect low parasitemia and identify different species of Plasmodium. However, it is time consuming, it requires well trained microscopist and good instrumentation to minimize misinterpretation, thus the costs are considerable. Moreover, the equipment cannot be easily transported and installed. In this paper we propose a new technique named "secondary speckle sensing microscopy" (S(3)M) based upon extraction of correlation based statistics of speckle patterns generated while illuminating red blood cells with a laser and inspecting them under a microscope. Then, using fuzzy logic ruling and principle component analysis, good quality of separation between healthy and infected red blood cells was demonstrated in preliminary experiments. The proposed technique can be used for automated high rate detection of malaria infected red blood cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA