Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Heliyon ; 10(10): e31422, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38818208

RESUMEN

The main aspects of mercury sulfide and mercury selenide thin film synthesis using the chemical deposition method are considered. An analysis of various factors affecting film properties was conducted, including the study of how the nature of the substrate and its pretreatment influence film properties. The effects of the working solution's temperature, deposition time, and annealing conditions on film characteristics were investigated. The impact of these parameters on the phase composition, and optical, electrical, and morphological properties of the films, is discussed and summarized. The review also explains how the choice and concentration of initial reagents affect the obtained films' parameters, characteristics, and properties.

2.
Nanoscale ; 13(45): 19023-19037, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34755752

RESUMEN

Multimodal gadolinium fluoride nanoparticles belong to potential contrast agents useful for bimodal optical fluorescence and magnetic resonance imaging. However, the metallic nature of the nanoparticles, similarly to some paramagnetic iron oxides, might induce allergic and anaphylactic reactions in patients after administration. A reduction of these adverse side effects is a priority for the safe application of the nanoparticles. Herein, we prepared paramagnetic poly(4-styrenesulfonic acid-co-maleic acid) (PSSMA)-stabilized GdF3 nanoparticles with surface modified by Atto 488-labeled poly(styrene-grad-2-dimethylaminoethyl acrylate)-block-poly(2-dimethylaminoethyl acrylate) (PSDA-A488) with reactive amino groups for introduction of an additional imaging (luminescence) modality and possible targeting of anticancer drugs. The saturation magnetization of GdF3@PSSMA particles according to SQUID magnetometry reached 157 Am2 kg-1 at 2 K and magnetic field of 7 T. GdF3@PSSMA-PSDA-A488 nanoparticles were well tolerated by human cervical adenocarcinoma (HeLa), mouse bone marrow-derived mast cells (BMMC), and rat basophilic mast cells (RBL-2H3); the particles also affected cell morphology and protein tyrosine phosphorylation in mast cells. Moreover, the nanoparticles interfered with the activation of mast cells by multivalent antigens and inhibited calcium mobilization and cell degranulation. These findings show that the new multimodal GdF3-based nanoparticles possess properties useful for various imaging methods and might minimize mast cell degranulation incurred after future nanoparticle diagnostic administration.


Asunto(s)
Mastocitos , Nanopartículas , Animales , Degranulación de la Célula , Factor 3 de Diferenciación de Crecimiento , Humanos , Ratones , Polímeros , Ratas
3.
Environ Sci Pollut Res Int ; 27(25): 31446-31457, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32488706

RESUMEN

The multiyear cultivation of Miscanthus × giganteus Greef et Deu (M.×giganteus) at the soils polluted by metal(loid)s were researched. The biomass parameters and concentrations of elements: Ti, Mn, Fe, Cu, Zn, As, Sr, and Mo were determined in the plant's organs at harvest. The same metal(loid)s were monitored in the plant's leaves throughout three vegetation seasons. The principal component analysis and general linear model approaches were applied for statistical evaluation followed by Box-Cox transformation. The difference in the distribution of elements in the plant, the content of elements in the soil, various regime of uptake to the plant tissues, and the year of vegetation were analyzed as driving factors of the phytoremediation. The results showed that the leading promoter was the factor of the zone, which was the most essential for Ti, Fe, and Cu and the smallest for Mn. The factor of differences in soil pollution was essential for Zn and Mo, much less for As, Sr, and Mn, limited for Fe, and was not seen for Ti and Cu. The factor of the interrelation effects of the zone and experiment reflected the different regime of uptake for the plant tissues was seen for two elements: more prominent for Cu and smaller for Ti. While analyzing the dynamic of foliar concentrations of the metal(loid)s during 3 years, two groups were defined. Firstly, Fe, Ni, Mn, and Sr showed stable curves with limited distribution of the plant life cycle. Secondly, As, Zn, Cu, and Mo showed different fluctuations in the curves, which can be attributed to essential influence of those elements to the plant life cycle. Further research will be focused on the application of M.×giganteus to the polluted soil in a bigger scale and comparison results of laboratory and field experiments.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Croacia , Suelo
4.
Rev Environ Health ; 34(3): 303-307, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31444967

RESUMEN

The aim of this research was to assess the effect of soil contamination with titanium (Ti) and iron (Fe) at military sites in Ukraine using the avoidance and reproduction tests with Folsomia candida (springtail). The soil used for the tests was sampled in 2017 from Dolyna, Ivano-Frankivsk region, Ukraine from two plots, namely a contaminated and a control site. The sample site is a former military site previously used for tank training. At the control site mainly the concentrations of Ti and Fe were exceeded. The control soil was free from contamination. The avoidance test and reproduction test were conducted with the use of springtail species F. candida. The following nine levels of contamination with heavy metals were established: 1%, 1.5%, 5%, 10%, 15%, 25%, 50%, 75% and 100%. The duration of the avoidance test was 7 days, and that of the reproduction test was 28 days. Overall, the results show that the avoidance and reproduction tests with collembolans have the potential to be used as screening tools in an ecological risk assessment of heavy metals. In the avoidance test, the concentrations from 1.5 to 100% significantly decreased the number of F. candida in the contamination site in comparison to the control site. At the same time, avoidance was not observed in the first concentration (1%). According to the reproduction test, the negative effect on the number of F. candida juveniles was observed beginning at the 10% dose. The half maximal effective concentration (EC50) for the avoidance test was 50.12%, while that for the reproduction test was 22.39%. The contamination with heavy metals at the military areas indicated the short- and long-term toxicity risk on the springtail F. candida.


Asunto(s)
Artrópodos/efectos de los fármacos , Hierro/toxicidad , Contaminantes del Suelo/toxicidad , Titanio/toxicidad , Pruebas de Toxicidad , Animales , Reacción de Prevención/efectos de los fármacos , Personal Militar , Reproducción/efectos de los fármacos , Medición de Riesgo
5.
Rev Environ Health ; 34(3): 283-291, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31318698

RESUMEN

The impact of plant growth regulators (PGRs) "Stimpo" and "Regoplant" on Miscanthus x giganteus (Mxg) biomass parameters was investigated when the plant was grown in military soils with different properties from Dolyna, Ukraine and Hradcany, Czech Republic. The results showed that PGRs positively influenced the biomass parameters when the plant was grown in soil in Dolyna with good agricultural characteristics, the influence of "Regoplant" was higher and the best results were obtained with combined treatment: application to rhizomes before planting and spraying on the biomass during vegetation. Using of PGRs did not improve the biomass parameters when the plant was grown in poor soil in Hradcany. In parallel the peculiarities of the metals uptake process were studied for the following metals: chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn), strontium (Sr) and lead (Pb). The uptake behavior of the monitored elements differed based on the soil quality. According to the bioconcentration factor uptake of the abiogenic elements, Cr and Pb, was dominant in the plant roots in both soils, whereas Ni was not detected in any plant tissues. The behavior of biogenic elements (Mn, Cu, Zn) and their analogs (Sr) was different. Those elements were more intensively taken up in shoot tissues in low-nutrient sandy Hradcany soils, while they were mainly taken up in plant roots in fertile Dolyna soils. The unusual behavior of biogenic elements in the low-nutrient soils may be explained by the effect of stress. However, more research is needed focused mainly on soil properties and nutrient availability in order to confirm or disprove this hypothesis and to explore the cause of the stress. The summarized results here show that soil properties influenced Mxg biomass parameters, affected the uptake behavior of metals significantly and tested PGRs cannot be utilized universally in the production of Mxg in the poor military soils.


Asunto(s)
Biomasa , Metales Pesados/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Poaceae/fisiología , Contaminantes del Suelo/metabolismo , Suelo/química , Bioacumulación , República Checa , Personal Militar , Poaceae/crecimiento & desarrollo , Poaceae/metabolismo , Ucrania
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA