RESUMEN
Ammonia monooxygenase and analogous oxygenase enzymes contribute to pharmaceutical biotransformation in activated sludge. In this study, we hypothesized that methane monooxygenase can enhance pharmaceutical biotransformation within the benthic, diffuse periphytic sediments (i.e., "biomat") of a shallow, open-water constructed wetland. To test this hypothesis, we combined field-scale metatranscriptomics, porewater geochemistry, and methane gas fluxes to inform microcosms targeting methane monooxygenase activity and its potential role in pharmaceutical biotransformation. In the field, sulfamethoxazole concentrations decreased within surficial biomat layers where genes encoding for the particulate methane monooxygenase (pMMO) were transcribed by a novel methanotroph classified as Methylotetracoccus. Inhibition microcosms provided independent confirmation that methane oxidation was mediated by the pMMO. In these same incubations, sulfamethoxazole biotransformation was stimulated proportional to aerobic methane-oxidizing activity and exhibited negligible removal in the absence of methane, in the presence of methane and pMMO inhibitors, and under anoxia. Nitrate reduction was similarly enhanced under aerobic methane-oxidizing conditions with rates several times faster than for canonical denitrification. Collectively, our results provide convergent in situ and laboratory evidence that methane-oxidizing activity can enhance sulfamethoxazole biotransformation, with possible implications for the combined removal of nitrogen and trace organic contaminants in wetland sediments.
Asunto(s)
Metano , Humedales , Oxidación-Reducción , Minerales , BiotransformaciónRESUMEN
In shallow, open-water engineered wetlands, design parameters select for a photosynthetic microbial biomat capable of robust pharmaceutical biotransformation, yet the contributions of specific microbial processes remain unclear. Here, we combined genome-resolved metatranscriptomics and oxygen profiling of a field-scale biomat to inform laboratory inhibition microcosms amended with a suite of pharmaceuticals. Our analyses revealed a dynamic surficial layer harboring oxic-anoxic cycling and simultaneous photosynthetic, nitrifying, and denitrifying microbial transcription spanning nine bacterial phyla, with unbinned eukaryotic scaffolds suggesting a dominance of diatoms. In the laboratory, photosynthesis, nitrification, and denitrification were broadly decoupled by incubating oxic and anoxic microcosms in the presence and absence of light and nitrogen cycling enzyme inhibitors. Through combining microcosm inhibition data with field-scale metagenomics, we inferred microbial clades responsible for biotransformation associated with membrane-bound nitrate reductase activity (emtricitabine, trimethoprim, and atenolol), nitrous oxide reduction (trimethoprim), ammonium oxidation (trimethoprim and emtricitabine), and photosynthesis (metoprolol). Monitoring of transformation products of atenolol and emtricitabine confirmed that inhibition was specific to biotransformation and highlighted the value of oscillating redox environments for the further transformation of atenolol acid. Our findings shed light on microbial processes contributing to pharmaceutical biotransformation in open-water wetlands with implications for similar nature-based treatment systems.
Asunto(s)
Compuestos de Amonio , Humedales , Atenolol , Biotransformación , Desnitrificación , Emtricitabina/metabolismo , Metoprolol , Nitrato Reductasas/metabolismo , Nitrificación , Nitrógeno/metabolismo , Óxido Nitroso , Oxígeno , Preparaciones Farmacéuticas , Fotosíntesis , Trimetoprim , AguaRESUMEN
Open-water unit process wetlands host a benthic diatomaceous and bacterial assemblage capable of nitrate removal from treated municipal wastewater with unexpected contributions from anammox processes. In exploring mechanistic drivers of anammox, 16S rRNA gene sequencing profiles of the biomat revealed significant microbial community shifts along the flow path and with depth. Notably, there was an increasing abundance of sulfate reducers (Desulfococcus and other Deltaproteobacteria) and anammox microorganisms (Brocadiaceae) with depth. Pore water profiles demonstrated that nitrate and sulfate concentrations exhibited a commensurate decrease with biomat depth accompanied by the accumulation of ammonium. Quantitative PCR targeting the anammox hydrazine synthase gene, hzsA, revealed a 3-fold increase in abundance with biomat depth as well as a 2-fold increase in the sulfate reductase gene, dsrA These microbial and geochemical trends were most pronounced in proximity to the influent region of the wetland where the biomat was thickest and influent nitrate concentrations were highest. While direct genetic queries for dissimilatory nitrate reduction to ammonium (DNRA) microorganisms proved unsuccessful, an increasing depth-dependent dominance of Gammaproteobacteria and diatoms that have previously been functionally linked to DNRA was observed. To further explore this potential, a series of microcosms containing field-derived biomat material confirmed the ability of the community to produce sulfide and reduce nitrate; however, significant ammonium production was observed only in the presence of hydrogen sulfide. Collectively, these results suggest that biogenic sulfide induces DNRA, which in turn can explain the requisite coproduction of ammonium and nitrite from nitrified effluent necessary to sustain the anammox community.IMPORTANCE This study aims to increase understanding of why and how anammox is occurring in an engineered wetland with limited exogenous contributions of ammonium and nitrite. In doing so, the study has implications for how geochemical parameters could potentially be leveraged to impact nutrient cycling and attenuation during the operation of treatment wetlands. The work also contributes to ongoing discussions about biogeochemical signatures surrounding anammox processes and enhances our understanding of the contributions of anammox processes in freshwater environments.
RESUMEN
A global phenomenon of increasing bark beetle-induced tree mortality has heightened concern regarding ecosystem response and biogeochemical implications. Here we explore microbial dynamics under lodgepole pines through the analysis of bulk (16S rDNA) and potentially active (16S rRNA) communities to understand terrestrial ecosystem responses associated with this form of large-scale tree morality. We found that the relative abundance of bulk and potentially active taxa was correlated across taxonomic levels, but at lower levels cladal differences became more apparent. Despite this correlation, there was a strong differentiation of community composition between bulk and potentially active taxa, with further clustering in association with stages of tree mortality. Surprisingly, community clustering as a function of tree phase had limited correlation to soil water content and total nitrogen concentrations, which were the only two measured edaphic parameters to differ in association with tree phase. Bacterial clustering is more readily explained by the observed decrease in abundance of active, rare microorganisms after tree death in conjunction with stable alpha diversity measurements. This enables the rare fraction of the terrestrial microbial community to maintain metabolic diversity by transitioning between metabolically active and dormant states during this ecosystem disturbance and contributes disproportionately to community dynamics and archived metabolic capabilities. These results suggest that analyzing the bulk and potentially active communities after beetle infestation might be a more sensitive indicator of disruption than measuring local edaphic parameters. IMPORTANCE: Forests around the world are experiencing unprecedented mortality due to insect infestations fueled in part by a changing climate. While above-ground processes have been explored, changes at the terrestrial interface relevant to microbial biogeochemical cycling remain largely unknown. In this study, we investigated the changing bulk and potentially active microbial communities beneath healthy and beetle-killed trees. We found that even though few edaphic parameters were altered from beetle infestation, the rare microbes were more likely to be active and fluctuate between dormancy and metabolic activity. This indicates rare as opposed to abundant taxa contribute disproportionately to microbial community dynamics and presumably biogeochemical cycling within these types of perturbed ecosystems.
RESUMEN
To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.
Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Ríos/microbiología , Aguas Residuales/microbiología , Bacterias/clasificación , Bacterias/genética , Biodiversidad , ADN Bacteriano/genética , ADN Ribosómico/genética , Sedimentos Geológicos/química , Filogenia , ARN Ribosómico 16S/genética , Ríos/química , Aguas Residuales/químicaRESUMEN
The application of aqueous film-forming foams (AFFFs) to extinguish chlorinated solvent-fueled fires has led to the co-contamination of poly- and perfluoroalkyl substances (PFASs) and trichloroethene (TCE) in groundwater and soil. Although reductive dechlorination of TCE by Dehalococcoides mccartyi is a frequently used remediation strategy, the effects of AFFF and PFASs on TCE dechlorination are not well-understood. Various AFFF formulations, PFASs, and ethylene glycols were amended to the growth medium of a D. mccartyi-containing enrichment culture to determine the impact on dechlorination, fermentation, and methanogenesis. The community was capable of fermenting organics (e.g., diethylene glycol butyl ether) in all AFFF formulations to hydrogen and acetate, but the product concentrations varied significantly according to formulation. TCE was dechlorinated in the presence of an AFFF formulation manufactured by 3M but was not dechlorinated in the presence of formulations from two other manufacturers. Experiments amended with AFFF-derived PFASs and perfluoroalkyl acids (PFAAs) indicated that dechlorination could be inhibited by PFASs but that the inhibition depends on surfactant concentration and structure. This study revealed that the fermentable components of AFFF can stimulate TCE dechlorination, while some of the fluorinated compounds in certain AFFF formulations can inhibit dechlorination.
Asunto(s)
Chloroflexi/metabolismo , Restauración y Remediación Ambiental/métodos , Consorcios Microbianos/fisiología , Tricloroetileno/metabolismo , Fermentación , Fluorocarburos/química , Halogenación , Hidrógeno/metabolismo , Tensoactivos/química , Tensoactivos/metabolismo , Tricloroetileno/química , Agua , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismoRESUMEN
The subsurface recalcitrance of perfluoroalkyl acids (PFAAs) derived from aqueous film-forming foams could have adverse impacts on the microbiological processes used for the bioremediation of co-mingled chlorinated solvents such as trichloroethene (TCE). Here, we show that reductive dechlorination by a methanogenic, mixed culture was significantly inhibited when exposed to concentrations representative of PFAA source zones (>66 mg/L total of 11 PFAA analytes, 6 mg/L each). TCE dechlorination, cis-dichloroethene and vinyl chloride production and dechlorination, and ethene generation were all inhibited at these PFAA concentrations. Phylogenetic analysis revealed that the abundances of 65% of the operational taxonomic units (OTUs) changed significantly when grown in the presence of PFAAs, although repression or enhancement resulting from PFAA exposure did not correlate with putative function or phylogeny. Notably, there was significant repression of Dehalococcoides (8-fold decrease in abundance) coupled with a corresponding enhancement of methane-generating Archaea (a 9-fold increase). Growth and dechlorination by axenic cultures of Dehalococcoides mccartyi strain 195 were similarly repressed under these conditions, confirming an inhibitory response of this pivotal genus to PFAA presence. These results suggest that chlorinated solvent bioattenuation rates could be impeded in subsurface environments near PFAA source zones.
Asunto(s)
Chloroflexi/metabolismo , Fluorocarburos/química , Halogenación , Tricloroetileno , Biodegradación Ambiental , Filogenia , Tricloroetileno/análisis , Tricloroetileno/química , Tricloroetileno/metabolismoRESUMEN
Syntrophic relationships between fermentative and sulfate-reducing bacteria are essential to lignocellulose-based systems applied to the passive remediation of mining-influenced waters. In this study, seven pilot-scale sulfate-reducing bioreactor columns containing varying ratios of alfalfa hay, pine woodchips, and sawdust were analyzed over â¼500 days to investigate the influence of substrate composition on zinc removal and microbial community structure. Columns amended with >10% alfalfa removed significantly more sulfate and zinc than did wood-based columns. Enumeration of sulfate reducers by functional signatures (dsrA) and their putative identification from 16S rRNA genes did not reveal significant correlations with zinc removal, suggesting limitations in this directed approach. In contrast, a strong indicator of zinc removal was discerned in comparing the relative abundance of core microorganisms shared by all reactors (>80% of total community), many of which had little direct involvement in metal or sulfate respiration. The relative abundance of Desulfosporosinus, the dominant putative sulfate reducer within these reactors, correlated to representatives of this core microbiome. A subset of these clades, including Treponema, Weissella, and Anaerolinea, was associated with alfalfa and zinc removal, and the inverse was found for a second subset whose abundance was associated with wood-based columns, including Ruminococcus, Dysgonomonas, and Azospira. The construction of a putative metabolic flowchart delineated syntrophic interactions supporting sulfate reduction and suggests that the production of and competition for secondary fermentation byproducts, such as lactate scavenging, influence bacterial community composition and reactor efficacy.
Asunto(s)
Reactores Biológicos/microbiología , Desulfovibrio/metabolismo , Lignina , Sulfatos , Zinc , Lignina/química , Lignina/metabolismo , Oxidación-Reducción , Sulfatos/química , Sulfatos/metabolismo , Zinc/análisis , Zinc/aislamiento & purificación , Zinc/metabolismoRESUMEN
This study focuses on interactions between aerobic soil-derived hydrocarbon degrading bacteria and a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates that are found in aqueous film-forming foams used for fire suppression. No effect on toluene degradation rate or induction time was observed when active cells of Rhodococcus jostii strain RHA1 were exposed to toluene and a mixture of perfluoroalkyl acids (PFAAs) including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) at concentrations near the upper bounds of groundwater relevance (11 PFAAs at 10 mg/L each). However, exposure to aqueous PFAA concentrations above 2 mg/L (each) was associated with enhanced aggregation of bacterial cells and significant increases in extracellular polymeric substance production. Flocculation was only observed during exponential growth and not elicited when PFAAs were added to resting incubations; analogous flocculation was also observed in soil enrichments. Aggregation was accompanied by 2- to 3-fold upregulation of stress-associated genes, sigF3 and prmA, during growth of this Rhodococcus in the presence of PFAAs. These results suggest that biological responses, such as microbial stress and biofilm formation, could be more prominent than suppression of co-contaminant biodegradation in subsurface locations where poly- and perfluoroalkyl substances occur with hydrocarbon fuels.
Asunto(s)
Ácidos Alcanesulfónicos/farmacología , Biopelículas/crecimiento & desarrollo , Caprilatos/farmacología , Fluorocarburos/farmacología , Rhodococcus/fisiología , Tolueno/metabolismo , Ácidos Alcanesulfónicos/metabolismo , Proteínas Bacterianas/genética , Biodegradación Ambiental , Caprilatos/metabolismo , Floculación , Fluorocarburos/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Agua Subterránea/química , Rhodococcus/efectos de los fármacos , Rhodococcus/metabolismo , Factor sigma/genética , Microbiología del Suelo , Estrés Fisiológico/genética , Tolueno/farmacología , Contaminantes Químicos del AguaRESUMEN
An improved in situ hybridization approach (Polygold-FISH) using biotinylated probes targeting multiple locations of the 16 S ribosomal subunit, followed by fluoronanogold-streptavidin labeling and autometallographic enhancement of nanogold particles was developed as a means of signal amplification of metallo-labeled cells, without the need for Catalyzed Reporter Deposition (CARD). Bacterial cells were readily detected based on their gold-particle signal using scanning-electron microscopy and energy-dispersive X-ray spectroscopy when contrasted with controls or cells hybridized with a single probe. Polygold-FISH presents an alternative to CARD-FISH, circumventing the need for aggressive oxidants, which is useful when products of microbial respiration such as those relevant at the microbe-mineral interface could be altered during processing for visualization.
Asunto(s)
Bacterias/genética , Bacterias/aislamiento & purificación , Hibridación Fluorescente in Situ/métodos , Bacterias/citología , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/ultraestructura , Nanopartículas del Metal , Shewanella/genética , Shewanella/aislamiento & purificación , Shewanella/ultraestructura , Shewanella putrefaciens/genética , Shewanella putrefaciens/aislamiento & purificación , Shewanella putrefaciens/ultraestructuraRESUMEN
The diffuse biomat formed on the bottom of shallow, open-water unit process wetland cells contains suboxic zones that provide conditions conducive to NO3(-) removal via microbial denitrification, as well as anaerobic ammonium oxidation (anammox). To assess these processes, nitrogen cycling was evaluated over a 3-year period in a pilot-scale wetland cell receiving nitrified municipal wastewater effluent. NO3(-) removal varied seasonally, with approximately two-thirds of the NO3(-) entering the cell removed on an annual basis. Microcosm studies indicated that NO3(-) removal was mainly attributable to denitrification within the diffuse biomat (i.e., 80 ± 20%), with accretion of assimilated nitrogen accounting for less than 3% of the NO3(-) removed. The importance of denitrification to NO3(-) removal was supported by the presence of denitrifying genes (nirS and nirK) within the biomat. While modest when compared to the presence of denitrifying genes, a higher abundance of the anammox-specific gene hydrazine synthase (hzs) at the biomat bottom than at the biomat surface, the simultaneous presence of NH4(+) and NO3(-) within the biomat, and NH4(+) removal coupled to NO2(-) and NO3(-) removal in microcosm studies, suggested that anammox may have been responsible for some NO3(-) removal, following reduction of NO3(-) to NO2(-) within the biomat. The annual temperature-corrected areal first-order NO3(-) removal rate (k20 = 59.4 ± 6.2 m yr(-1)) was higher than values reported for more than 75% of vegetated wetlands that treated water in which NO3(-) was the primary nitrogen species (e.g., nitrified secondary wastewater effluent and agricultural runoff). The inclusion of open-water cells, originally designed for the removal of trace organic contaminants and pathogens, in unit-process wetlands may enhance NO3(-) removal as compared to existing vegetated wetland systems.
Asunto(s)
Nitratos/aislamiento & purificación , Purificación del Agua/métodos , Humedales , Carbono/análisis , Nitrógeno/análisis , Fósforo/análisis , Proyectos Piloto , Eliminación de Residuos Líquidos , Aguas Residuales/química , Calidad del AguaRESUMEN
The bottoms of shallow, open-water wetland cells are rapidly colonized by a biomat consisting of an assemblage of photosynthetic and heterotrophic microorganisms. To assess the contribution of biotransformation in this biomat to the overall attenuation of trace organic contaminants, transformation rates of test compounds measured in microcosms were compared with attenuation rates measured in a pilot-scale system. The biomat in the pilot-scale system was composed of diatoms (Staurosira construens) and a bacterial community dominated by ß- and γ-Proteobacteria. Biotransformation was the dominant removal mechanism in the pilot-scale system for atenolol, metoprolol, and trimethoprim, while sulfamethoxazole and propranolol were attenuated mainly via photolysis. In microcosm experiments, biotransformation rates increased for metoprolol and propranolol when algal photosynthesis was supported by irradiation with visible light. Biotransformation rates increased for trimethoprim and sulfamethoxazole in the dark, when microbial respiration depleted dissolved oxygen concentrations within the biomat. During summer, atenolol, metoprolol, and propranolol were rapidly attenuated in the pilot-scale system (t1/2 < 0.5 d), trimethoprim and sulfamethoxazole were transformed more slowly (t1/2 ≈ 1.5-2 d), and carbamazepine was recalcitrant. The combination of biotransformation and photolysis resulted in overall transformation rates that were 10 to 100 times faster than those previously measured in vegetated wetlands, allowing for over 90% attenuation of all compounds studied except carbamazepine within an area similar to that typical of existing full-scale vegetated treatment wetlands.
Asunto(s)
Diatomeas/metabolismo , Compuestos Orgánicos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Proteobacteria/metabolismo , Contaminantes Químicos del Agua/metabolismo , Humedales , Biotransformación , Diatomeas/clasificación , Diatomeas/genética , Compuestos Orgánicos/química , Preparaciones Farmacéuticas/química , Fotosíntesis , Filogenia , Proyectos Piloto , Proteobacteria/clasificación , Proteobacteria/genética , Contaminantes Químicos del Agua/químicaRESUMEN
Introduction of acetate into groundwater at the Rifle Integrated Field Research Challenge (Rifle, CO) has been used for biostimulation aimed at immobilizing uranium. While a promising approach for lowering groundwater-associated uranium, a concomitant increase in soluble arsenic was also observed at the site. An array of field data was analyzed to understand spatial and temporal trends in arsenic release and possible correlations to speciation, subsurface redox conditions, and biogeochemistry. Arsenic release (up to 9 µM) was strongest under sulfate reducing conditions in areas receiving the highest loadings of acetate. A mixture of thioarsenate species, primarily trithioarsenate and dithioarsenate, were found to dominate arsenic speciation (up to 80%) in wells with the highest arsenic releases; thioarsenates were absent or minor components in wells with low arsenic release. Laboratory batch incubations revealed a strong preference for the formation of multiple thioarsenic species in the presence of the reduced precursors arsenite and sulfide. Although total soluble arsenic increased during field biostimulation, the termination of sulfate reduction was accompanied by recovery of soluble arsenic to concentrations at or below prestimulation levels. Thioarsenic species can be responsible for the transient mobility of sediment-associated arsenic during sulfidogenesis and should be considered when remediation strategies are implemented in sulfate-bearing, contaminated aquifers.
Asunto(s)
Arsénico/análisis , Sulfatos/química , Compuestos de Azufre/análisis , Técnicas de Cultivo Celular por Lotes , Ambiente , Oxidación-Reducción , Azufre/análisis , Incertidumbre , Contaminantes Químicos del Agua/análisisRESUMEN
To better query regional sources of metal(loid) exposure in an under-communicated region, available scientific literature from 50 national universities (undergraduate and graduate theses and dissertations), peer-reviewed journals, and reports published in Spanish and English were synthesized with a focus on metal(loid) bioaccumulation in Peruvian food and medicinal products utilized locally. The study considered 16 metal(loid)s that are known to exert toxic impacts on humans (Hg, Al, Sb, As, Ba, Be, Cd, Cr, Sn, Ni, Ag, Pb, Se, Tl, Ti, and U). A total of 1907 individual analyses contained within 231 scientific publications largely conducted by Peruvian universities were analyzed. These analyses encompassed 239 reported species classified into five main food/medicinal groups-plants, fish, macroinvertebrates and mollusks, mammals, and "others" category. Our benchmark for comparison was the World Health Organization (Codex Alimentarius) standards. The organisms most frequently investigated included plants such as asparagus, corn, cacao, and rice; fish varieties like trout, tuna, and catfish; macroinvertebrates and mollusks including crab and shrimp; mammals such as alpaca, cow, chicken eggs, and milk; and other categories represented by propolis, honey, lichen, and edible frog. Bioaccumulation-related research increased from 2 to more than 25 publications per year between 2006 and 2022. The results indicate that Peruvian food and natural medicinal products can have dangerous levels of metal(loid)s, which can cause health problems for consumers. Many common and uncommon food/medicinal products and harmful metals identified in this analysis are not regulated on the WHO's advisory lists, suggesting the urgent need for stronger regulations to ensure public safety. In general, Cd and Pb are the metals that violated WHO standards the most, although commonly non-WHO regulated metals such as Hg, Al, As, Cr, and Ni are also a concern. Metal concentrations found in Peru are on many occasions much higher than what has been reported elsewhere. We conclude that determining the safety of food/medicinal products is challenging due to varying metal concentrations that are influenced not only by metal type but also geographical location. Given the scarcity of research findings in many regions of Peru, urgent attention is required to address this critical knowledge gap and implement effective regulatory measures to protect public health.
RESUMEN
The metalloids boron and arsenic are ubiquitous and difficult to remove during water treatment. As chemical pretreatment using strong base and oxidants can increase their rejection during membrane-based nanofiltration (NF), we examined a nature-based pretreatment approach using benthic photosynthetic processes inherent in a unique type of constructed wetland to assess whether analogous gains can be achieved without the need for exogenous chemical dosing. During peak photosynthesis, the pH of the overlying clear water column above a photosynthetic microbial mat (biomat) that naturally colonizes shallow, open water constructed wetlands climbs from circumneutral to approximately 10. This biological increase in pH was reproduced in a laboratory bioreactor and resulted in analogous increases in NF rejection of boron and arsenic that is comparable to chemical dosing. Rejection across the studied pH range was captured using a monoprotic speciation model. In addition to this mechanism, the biomat accelerated the oxidation of introduced arsenite through a combination of abiotic and biotic reactions. This resulted in increases in introduced arsenite rejection that eclipsed those achieved solely by pH. Capital, operation, and maintenance costs were used to benchmark the integration of this constructed wetland against chemical dosing for water pretreatment, manifesting long-term (sub-decadal) economic benefits for the wetland-based strategy in addition to social and environmental benefits. These results suggest that the integration of nature-based pretreatment approaches can increase the sustainability of membrane-based and potentially other engineered treatment approaches for challenging water contaminants.
Asunto(s)
Arsénico , Arsenitos , Contaminantes Químicos del Agua , Arsénico/análisis , Boro , Humedales , Fotosíntesis , Contaminantes Químicos del Agua/análisisRESUMEN
Though surface water quality has been monitored in southern Peru over the past and current century, it has been implemented by multiple organizations. The data lacks a centralized repository and access requires logistical and temporal hurdles associated with official requests. A substantial portion of the data has not been quality assured and is in difficult-to-access formats such as scanned PDF documents. These obstacles collectively make it challenging to maximize the impact of these monitoring efforts such as efficiently evaluating long-term water quality trends. To address this opportunity, we gathered available surface water quality information from five watersheds in the Arequipa Region of southern Peru: Camaná, Chili, Ocoña, Tambo, and Yauca. The effort required entry of more than 130,000 records of water quality properties across 274 monitoring stations with data including the concentration of select nutrients, metals, organic compounds, and biological taxa. The water quality records in the Chili watershed go back as far as 1905, while data for the other watersheds was largely confined to the years 2012-2021. This document describes how the surface water quality information was assimilated with quality control and provides a centralized Excel database so that the data can be efficiently used for research and decision making purposes.
RESUMEN
The toxicity of N-nitrosamines, their presence in drinking and environmental water supplies, and poorly understood recalcitrance collectively necessitate a better understanding of their potential for bioattenuation. Here, we show that the bacterial strain Rhodococcus jostii RHA1 can biotransform N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosopyrrolidine (NPYR), and possibly N-nitrosomorpholine (NMOR) in addition to N-nitrosodimethylamine (NDMA). Growth of cells on propane as the sole carbon source greatly enhanced degradation rates when contrasted with cells grown on complex organics. Propane-induced rates in order of fastest to slowest were NDMA > NDEA > NDPA > NPYR > NMOR at concentrations <2000 µg/L. Removal rates for linear functional groups scaled inversely with mass and cyclic nitrosamines were more recalcitrant than linear nitrosamines. Controls demonstrated significant NDEA and NDPA losses independent of biomass, suggesting abiotic processes may play a role in attenuation of these two compounds under experimental conditions tested here. In contrast to NDMA, a transition from first to zero order kinetics was not observed for the other nitrosamines included in this study over a concentration range of 20-2000 µg/L. A genetic knockout for the propane monooxygenase enzyme (PrMO) confirmed the role of this enzyme in the biotransformation of NDEA and NPYR. This study furthers our understanding of environmental nitrosamine attenuation by revealing an enzymatic mechanism for the biotransformation of multiple nitrosamines, their relative recalcitrance to transformation, and potential for abiotic loss.
Asunto(s)
Proteínas Bacterianas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Nitrosaminas/metabolismo , Rhodococcus/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biotransformación/efectos de los fármacos , Propano/farmacología , Rhodococcus/efectos de los fármacosRESUMEN
Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe.
RESUMEN
Artisanal and small-scale gold mining (ASGM) is the leading global source of anthropogenic mercury (Hg) release to the environment. Top-down mercury reduction efforts have had limited results, but a bottom-up embrace of cyanide (CN) processing could eventually displace mercury amalgamation for gold recovery. However, ASGM transitions to cyanidation nearly always include an overlap phase, with mercury amalgamation then cyanidation being used sequentially. This paper uses a transdisciplinary approach that combines natural and social sciences to develop a holistic picture of why mercury and cyanide converge in gold processing and potential impacts that may be worse than either practice in isolation. We show that socio-economic factors drive the comingling of mercury and cyanide practices in ASGM as much or more so than technical factors. The resultant Hg-CN complexes have been implicated in increasing the mobility of mercury, compared to elemental mercury used in Hg-only processing. To support future inquiry, we identify key knowledge gaps including the role of Hg-CN complexes in mercury oxidation, transport, and fate, and possible links to mercury methylation. The global extent and increase of mercury and cyanide processing in ASGM underscores the importance of further research. The immediacy of the problem also demands interim policy responses while research advances, though ultimately, the well-documented struggles of mercury reduction efforts in ASGM temper optimism about policy responses to the mercury-cyanide transition.
RESUMEN
Nature-based solutions offer a sustainable alternative to labor and chemical intensive engineered treatment of metal-impaired waste streams. Shallow, unit process open water (UPOW) constructed wetlands represent a novel design where benthic photosynthetic microbial mats (biomat) coexist with sedimentary organic matter and inorganic (mineral) phases, creating an environment for multiple-phase interactions with soluble metals. To query the interplay of dissolved metals with inorganic and organic fractions, biomat was harvested from two distinct systems: the demonstration-scale UPOW within the Prado constructed wetlands complex ("Prado biomat", 88 % inorganic) and a smaller pilot-scale system ("Mines Park (MP) biomat", 48 % inorganic). Both biomats accumulated detectable background concentrations of metals of toxicological concern (Zn, Cu, Pb, and Ni) by assimilation from waters that did not exceed regulatory thresholds for these metals. Augmentation in laboratory microcosms with a mixture of these metals at ecotoxicologically relevant concentrations revealed a further capacity for metal removal (83-100 %). Experimental concentrations encapsulated the upper range of surface waters in the metal-impaired Tambo watershed in Peru, where a passive treatment technology such as this could be applied. Sequential extractions demonstrated that metal removal by mineral fractions is more important in Prado than MP biomat, possibly due to a higher proportion and mass of iron and other minerals from Prado-derived materials. Geochemical modeling using PHREEQC suggests that in addition to sorption/surface complexation of metals to mineral phases (modeled as iron (oxyhydr)oxides), diatom and bacterial functional groups (carboxyl, phosphoryl, and silanol) also play an important role in soluble metal removal. By comparing sequestered metal phases across these biomats with differing inorganic content, we propose that sorption/surface complexation and incorporation/assimilation of both inorganic and organic constituents of the biomat play a dominant role in metal removal potential by UPOW wetlands. This knowledge could be applied to passively treat metal impaired waters in analogous and remote regions.