RESUMEN
Given the importance of climate in shaping species' geographic distributions, climate change poses an existential threat to biodiversity. Climate envelope modeling, the predominant approach used to quantify this threat, presumes that individuals in populations respond to climate variability and change according to species-level responses inferred from spatial occurrence data-such that individuals at the cool edge of a species' distribution should benefit from warming (the "leading edge"), whereas individuals at the warm edge should suffer (the "trailing edge"). Using 1,558 tree-ring time series of an aridland pine (Pinus edulis) collected at 977 locations across the species' distribution, we found that trees everywhere grow less in warmer-than-average and drier-than-average years. Ubiquitous negative temperature sensitivity indicates that individuals across the entire distribution should suffer with warming-the entire distribution is a trailing edge. Species-level responses to spatial climate variation are opposite in sign to individual-scale responses to time-varying climate for approximately half the species' distribution with respect to temperature and the majority of the species' distribution with respect to precipitation. These findings, added to evidence from the literature for scale-dependent climate responses in hundreds of species, suggest that correlative, equilibrium-based range forecasts may fail to accurately represent how individuals in populations will be impacted by changing climate. A scale-dependent view of the impact of climate change on biodiversity highlights the transient risk of extinction hidden inside climate envelope forecasts and the importance of evolution in rescuing species from extinction whenever local climate variability and change exceeds individual-scale climate tolerances.
Asunto(s)
Cambio Climático , Extinción Biológica , Pinus , Pinus/fisiología , Árboles , Biodiversidad , Predicción/métodos , Temperatura , Modelos ClimáticosRESUMEN
Climate change-triggered forest die-off is an increasing threat to global forests and carbon sequestration but remains extremely challenging to predict. Tree growth resilience metrics have been proposed as measurable proxies of tree susceptibility to mortality. However, it remains unclear whether tree growth resilience can improve predictions of stand-level mortality. Here, we use an extensive tree-ring dataset collected at ~3000 permanent forest inventory plots, spanning 13 dominant species across the US Mountain West, where forests have experienced strong drought and extensive die-off has been observed in the past two decades, to test the hypothesis that tree growth resilience to drought can explain and improve predictions of observed stand-level mortality. We found substantial increases in growth variability and temporal autocorrelation as well declining drought resistance and resilience for a number of species over the second half of the 20th century. Declining resilience and low tree growth were strongly associated with cross- and within-species patterns of mortality. Resilience metrics had similar explicative power compared to climate and stand structure, but the covariance structure among predictors implied that the effect of tree resilience on mortality could partially be explained by stand and climate variables. We conclude that tree growth resilience offers highly valuable insights on tree physiology by integrating the effect of stressors on forest mortality but may have only moderate potential to improve large-scale projections of forest die-off under climate change.
Asunto(s)
Bosques , Árboles , Sequías , Resistencia a la Sequía , Cambio ClimáticoRESUMEN
Drought, a recurring phenomenon with major impacts on both human and natural systems, is the most widespread climatic extreme that negatively affects the land carbon sink. Although twentieth-century trends in drought regimes are ambiguous, across many regions more frequent and severe droughts are expected in the twenty-first century. Recovery time-how long an ecosystem requires to revert to its pre-drought functional state-is a critical metric of drought impact. Yet the factors influencing drought recovery and its spatiotemporal patterns at the global scale are largely unknown. Here we analyse three independent datasets of gross primary productivity and show that, across diverse ecosystems, drought recovery times are strongly associated with climate and carbon cycle dynamics, with biodiversity and CO2 fertilization as secondary factors. Our analysis also provides two key insights into the spatiotemporal patterns of drought recovery time: first, that recovery is longest in the tropics and high northern latitudes (both vulnerable areas of Earth's climate system) and second, that drought impacts (assessed using the area of ecosystems actively recovering and time to recovery) have increased over the twentieth century. If droughts become more frequent, as expected, the time between droughts may become shorter than drought recovery time, leading to permanently damaged ecosystems and widespread degradation of the land carbon sink.
Asunto(s)
Sequías/estadística & datos numéricos , Ecosistema , Internacionalidad , Análisis Espacio-Temporal , Biodiversidad , Dióxido de Carbono/análisis , Secuestro de Carbono , Sequías/historia , Calentamiento Global , Historia del Siglo XX , Historia del Siglo XXI , Lluvia , Suelo/química , Temperatura , Factores de Tiempo , Clima Tropical , Incendios ForestalesRESUMEN
Understanding the driving mechanisms behind existing patterns of vegetation hydraulic traits and community trait diversity is critical for advancing predictions of the terrestrial carbon cycle because hydraulic traits affect both ecosystem and Earth system responses to changing water availability. Here, we leverage an extensive trait database and a long-term continental forest plot network to map changes in community trait distributions and quantify "trait velocities" (the rate of change in community-weighted traits) for different regions and different forest types across the United States from 2000 to the present. We show that diversity in hydraulic traits and photosynthetic characteristics is more related to local water availability than overall species diversity. Finally, we find evidence for coordinated shifts toward communities with more drought-tolerant traits driven by tree mortality, but the magnitude of responses differs depending on forest type. The hydraulic trait distribution maps provide a publicly available platform to fundamentally advance understanding of community trait change in response to climate change and predictive abilities of mechanistic vegetation models.
Asunto(s)
Biodiversidad , Cambio Climático , Ecosistema , Bosques , Fenómenos Fisiológicos de las Plantas , Árboles/fisiología , Agua , Sequías , Estrés FisiológicoRESUMEN
Estimates of the percentage of species "committed to extinction" by climate change range from 15% to 37%. The question is whether factors other than climate need to be included in models predicting species' range change. We created demographic range models that include climate vs. climate-plus-competition, evaluating their influence on the geographic distribution of Pinus edulis, a pine endemic to the semiarid southwestern U.S. Analyses of data on 23,426 trees in 1941 forest inventory plots support the inclusion of competition in range models. However, climate and competition together only partially explain this species' distribution. Instead, the evidence suggests that climate affects other range-limiting processes, including landscape-scale, spatial processes such as disturbances and antagonistic biotic interactions. Complex effects of climate on species distributions-through indirect effects, interactions, and feedbacks-are likely to cause sudden changes in abundance and distribution that are not predictable from a climate-only perspective.
Asunto(s)
Ecosistema , Pinus , Cambio Climático , Bosques , ÁrbolesRESUMEN
Robust ecological forecasting of tree growth under future climate conditions is critical to anticipate future forest carbon storage and flux. Here, we apply three ingredients of ecological forecasting that are key to improving forecast skill: data fusion, confronting model predictions with new data, and partitioning forecast uncertainty. Specifically, we present the first fusion of tree-ring and forest inventory data within a Bayesian state-space model at a multi-site, regional scale, focusing on Pinus ponderosa var. brachyptera in the southwestern US. Leveraging the complementarity of these two data sources, we parsed the ecological complexity of tree growth into the effects of climate, tree size, stand density, site quality, and their interactions, and quantified uncertainties associated with these effects. New measurements of trees, an ongoing process in forest inventories, were used to confront forecasts of tree diameter with observations, and evaluate alternative tree growth models. We forecasted tree diameter and increment in response to an ensemble of climate change projections, and separated forecast uncertainty into four different causes: initial conditions, parameters, climate drivers, and process error. We found a strong negative effect of fall-spring maximum temperature, and a positive effect of water-year precipitation on tree growth. Furthermore, tree vulnerability to climate stress increases with greater competition, with tree size, and at poor sites. Under future climate scenarios, we forecast increment declines of 22%-117%, while the combined effect of climate and size-related trends results in a 56%-91% decline. Partitioning of forecast uncertainty showed that diameter forecast uncertainty is primarily caused by parameter and initial conditions uncertainty, but increment forecast uncertainty is mostly caused by process error and climate driver uncertainty. This fusion of tree-ring and forest inventory data lays the foundation for robust ecological forecasting of aboveground biomass and carbon accounting at tree, plot, and regional scales, including iterative improvement of model skill.
Asunto(s)
Bosques , Pinus , Teorema de Bayes , Carbono , Cambio Climático , IncertidumbreRESUMEN
Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and-ultimately-the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.
RESUMEN
Identifying the signs and symptoms of pathogens, insects, and other biotic and abiotic agents provides valuable information about the absolute and relative impacts of different types of damage across the forest landscape. In the USA, damage collection protocols have been included in various forms since the initiation of state-level forest surveys in the early twentieth century; however, changes in the protocols over time have made it difficult for the data to be used to its full potential. This article outlines differences in protocols across inventory regions, changes in protocols over time, and limitations and utility of the data so that those interested in using the US national forest inventory database will better understand what data are available and how they have been and can be used.
Asunto(s)
Conservación de los Recursos Naturales , Árboles , Monitoreo del Ambiente , BosquesRESUMEN
A central challenge in global change research is the projection of the future behavior of a system based upon past observations. Tree-ring data have been used increasingly over the last decade to project tree growth and forest ecosystem vulnerability under future climate conditions. But how can the response of tree growth to past climate variation predict the future, when the future does not look like the past? Space-for-time substitution (SFTS) is one way to overcome the problem of extrapolation: the response at a given location in a warmer future is assumed to follow the response at a warmer location today. Here we evaluated an SFTS approach to projecting future growth of Douglas-fir (Pseudotsuga menziesii), a species that occupies an exceptionally large environmental space in North America. We fit a hierarchical mixed-effects model to capture ring-width variability in response to spatial and temporal variation in climate. We found opposing gradients for productivity and climate sensitivity with highest growth rates and weakest response to interannual climate variation in the mesic coastal part of Douglas-fir's range; narrower rings and stronger climate sensitivity occurred across the semi-arid interior. Ring-width response to spatial versus temporal temperature variation was opposite in sign, suggesting that spatial variation in productivity, caused by local adaptation and other slow processes, cannot be used to anticipate changes in productivity caused by rapid climate change. We thus substituted only climate sensitivities when projecting future tree growth. Growth declines were projected across much of Douglas-fir's distribution, with largest relative decreases in the semiarid U.S. Interior West and smallest in the mesic Pacific Northwest. We further highlight the strengths of mixed-effects modeling for reviving a conceptual cornerstone of dendroecology, Cook's 1987 aggregate growth model, and the great potential to use tree-ring networks and results as a calibration target for next-generation vegetation models.
Asunto(s)
Pseudotsuga , Cambio Climático , Ecosistema , América del Norte , Noroeste de Estados Unidos , ÁrbolesRESUMEN
Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects - bark beetles and defoliators - which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree-insect interactions will better inform projections of forest ecosystem responses to climate change.
Asunto(s)
Cambio Climático , Sequías , Herbivoria , Insectos/fisiología , Árboles/fisiología , AnimalesRESUMEN
Trees are long-lived organisms that integrate climate conditions across years or decades to produce secondary growth. This integration process is sometimes referred to as 'climatic memory.' While widely perceived, the physiological processes underlying this temporal integration, such as the storage and remobilization of non-structural carbohydrates (NSC), are rarely explicitly studied. This is perhaps most apparent when considering drought legacies (perturbed post-drought growth responses to climate), and the physiological mechanisms underlying these lagged responses to climatic extremes. Yet, drought legacies are likely to become more common if warming climate brings more frequent drought. To quantify the linkages between drought legacies, climate memory and NSC, we measured tree growth (via tree ring widths) and NSC concentrations in three dominant species across the southwestern USA. We analyzed these data with a hierarchical mixed effects model to evaluate the time-scales of influence of past climate (memory) on tree growth. We then evaluated the role of climate memory and the degree to which variation in NSC concentrations were related to forward-predicted growth during the hot 2011-2012 drought and subsequent 4-year recovery period. Populus tremuloides exhibited longer climatic memory compared to either Pinus edulis or Juniperus osteosperma, but following the 2011-2012 drought, P. tremuloides trees with relatively longer memory of temperature conditions showed larger (more negative) drought legacies. Conversely, Pinus edulis trees with longer temperature memory had smaller (less negative) drought legacies. For both species, higher NSC concentrations followed more negative (larger) drought legacies, though the relevant NSC fraction differed between P. tremuloides and P. edulis. Our results suggest that differences in tree NSC are also imprinted upon tree growth responses to climate across long time scales, which also underlie tree resilience to increasingly frequent drought events under climate change.
Asunto(s)
Sequías , Árboles , Carbohidratos , Cambio Climático , Temperatura , Árboles/fisiologíaRESUMEN
Climate-tree growth relationships recorded in annual growth rings have recently been the basis for projecting climate change impacts on forests. However, most trees and sample sites represented in the International Tree-Ring Data Bank (ITRDB) were chosen to maximize climate signal and are characterized by marginal growing conditions not representative of the larger forest ecosystem. We evaluate the magnitude of this potential bias using a spatially unbiased tree-ring network collected by the USFS Forest Inventory and Analysis (FIA) program. We show that U.S. Southwest ITRDB samples overestimate regional forest climate sensitivity by 41-59%, because ITRDB trees were sampled at warmer and drier locations, both at the macro- and micro-site scale, and are systematically older compared to the FIA collection. Although there are uncertainties associated with our statistical approach, projection based on representative FIA samples suggests 29% less of a climate change-induced growth decrease compared to projection based on climate-sensitive ITRDB samples.
RESUMEN
We document high rates of triploidy in aspen (Populus tremuloides) across the western USA (up to 69% of genets), and ask whether the incidence of triploidy across the species range corresponds with latitude, glacial history (as has been documented in other species), climate, or regional variance in clone size. Using a combination of microsatellite genotyping, flow cytometry, and cytology, we demonstrate that triploidy is highest in unglaciated, drought-prone regions of North America, where the largest clone sizes have been reported for this species. While we cannot completely rule out a low incidence of undetected aneuploidy, tetraploidy or duplicated loci, our evidence suggests that these phenomena are unlikely to be significant contributors to our observed patterns. We suggest that the distribution of triploid aspen is due to a positive synergy between triploidy and ecological factors driving clonality. Although triploids are expected to have low fertility, they are hypothesized to be an evolutionary link to sexual tetraploidy. Thus, interactions between clonality and polyploidy may be a broadly important component of geographic speciation patterns in perennial plants. Further, cytotypes are expected to show physiological and structural differences which may influence susceptibility to ecological factors such as drought, and we suggest that cytotype may be a significant and previously overlooked factor in recent patterns of high aspen mortality in the southwestern portion of the species range. Finally, triploidy should be carefully considered as a source of variance in genomic and ecological studies of aspen, particularly in western U.S. landscapes.