Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Fluor Chem ; 184: 58-64, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27110036

RESUMEN

19F-magnetic resonance imaging (MRI) is a promising technique that may allow us to measure the concentration of exogenous fluorinated imaging probes quantitatively in vivo. Here, we describe the synthesis and characterisation of a novel geminal bisphosphonate (19F-BP) that contains chemically-equivalent fluorine atoms that show a single and narrow 19F resonance and a bisphosphonate group that may be used for labelling inorganic materials based in calcium phosphates and metal oxides. The potential of 19F-BP to provide contrast was analysed in vitro and in vivo using 19F-MRI. In vitro studies demonstrated the potential of 19F-BP as an MRI contrast agent in the millimolar concentration range with signal-to-noise ratios (SNR) comparable to previously reported fluorinated probes. The preliminary in vivo MRI study reported here allowed us to visualise the biodistribution of 19F-BP, showing uptake in the liver and in the bladder/urinary system areas. However, bone uptake was not observed. In addition, 19F-BP showed undesirable toxicity effects in mice that prevent further studies with this compound at the required concentrations for MRI contrast. This study highlights the importance of developing 19F MRI probes with the highest signal intensity achievable.

2.
Bioconjug Chem ; 23(5): 1029-39, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22471317

RESUMEN

High radiolabeling efficiency, preferably to high specific activity, and good stability of the radioimmunoconjugate are essential features for a successful immunoconjugate for imaging or therapy. In this study, the radiolabeling efficiency, in vitro stability, and biodistribution of immunoconjugates with eight different bifunctional chelators labeled with (64)Cu were compared. The anti-CD20 antibody, rituximab, was conjugated to four macrocyclic bifunctional chelators (p-SCN-Bn-DOTA, p-SCN-Bn-Oxo-DO3A, p-SCN-NOTA, and p-SCN-PCTA), three DTPA derivatives (p-SCN-Bn-DTPA, p-SCN-CHX-A″-DTPA, and ITC-2B3M-DTPA), and a macrobicyclic hexamine (sarcophagine) chelator (sar-CO2H) = (1-NH2-8-NHCO(CH2)3CO2H)sar where sar = sarcophagine = 3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane). Radiolabeling efficiency under various conditions, in vitro stability in serum at 37 °C, and in vivo biodistribution and imaging in normal mice over 48 h were studied. All chelators except sar-CO2H were conjugated to rituximab by thiourea bond formation with an average of 4.9 ± 0.9 chelators per antibody molecule. Sar-CO2H was conjugated to rituximab by amide bond formation with 0.5 chelators per antibody molecule. Efficiencies of (64)Cu radiolabeling were dependent on the concentration of immunoconjugate. Notably, the (64)Cu-NOTA-rituximab conjugate demonstrated the highest radiochemical yield (95%) under very dilute conditions (31 nM NOTA-rituximab conjugate). Similarly, sar-CO-rituximab, containing 1/10th the number of chelators per antibody compared to that of other conjugates, retained high labeling efficiency (98%) at an antibody concentration of 250 nM. In contrast to the radioimmunoconjugates containing DTPA derivatives, which demonstrated poor serum stability, all macrocyclic radioimmunoconjugates were very stable in serum with <6% dissociation of (64)Cu over 48 h. In vivo biodistribution profiles in normal female Balb/C mice were similar for all the macrocyclic radioimmunoconjugates with most of the activity remaining in the blood pool up to 48 h. While all the macrocyclic bifunctional chelators are suitable for molecular imaging using (64)Cu-labeled antibody conjugates, NOTA and sar-CO2H show significant advantages over the others in that they can be radiolabeled rapidly at room temperature, under dilute conditions, resulting in high specific activity.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/química , Quelantes/química , Radioisótopos de Cobre/química , Inmunoconjugados/química , Radiofármacos/química , Animales , Anticuerpos Monoclonales de Origen Murino/farmacocinética , Quelantes/farmacocinética , Radioisótopos de Cobre/farmacocinética , Estabilidad de Medicamentos , Femenino , Inmunoconjugados/farmacocinética , Marcaje Isotópico , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacocinética , Ratones , Ratones Endogámicos BALB C , Tomografía de Emisión de Positrones , Radiofármacos/farmacocinética , Rituximab , Distribución Tisular
3.
Inorg Chem ; 50(14): 6701-10, 2011 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-21667932

RESUMEN

The synthesis of new cage amine macrobicyclic ligands with pendent carboxylate functional groups designed for application in copper radiopharmaceuticals is described. Reaction of [Cu((NH(2))(2)sar)](2+) (sar = 3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane) with either succinic or glutaric anhydride results in selective acylation of the primary amine atoms of [Cu((NH(2))(2)sar)](2+) to give derivatives with either one or two aliphatic carboxylate functional groups separated from the cage amine framework by either a four- or five-atom linker. The Cu(II) serves to protect the secondary amine nitrogen atoms from acylation, and can be removed to give the free ligands. The newly appended carboxylate functional groups can be used as sites of attachment for cancer-targeting peptides such as Lys(3)-bombesin. The synthesis of the first dimeric sarcophagine-peptide conjugate, possessing two Lys(3)-bombesin peptides tethered to a single cage amine, is presented. This species has been radiolabeled with copper-64 at ambient temperature and there is minimal dissociation of Cu(II) from the conjugate even after two days of incubation in human serum.


Asunto(s)
Aminas/química , Bombesina/química , Compuestos Macrocíclicos/química , Compuestos Organofosforados/química , Péptidos/química , Radiofármacos/química , Bombesina/análogos & derivados , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Ligandos , Lisina/química , Compuestos Macrocíclicos/síntesis química , Modelos Moleculares , Conformación Molecular , Compuestos Organofosforados/síntesis química , Radiofármacos/síntesis química , Estereoisomerismo
4.
J Nucl Med ; 56(6): 921-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25883129

RESUMEN

UNLABELLED: The subtle hypoxia underlying chronic cardiovascular disease is an attractive target for PET imaging, but the lead hypoxia imaging agents (64)Cu-2,3-butanedione bis(N4-methylthiosemicarbazone) (ATSM) and (18)F-fluoromisonidazole are trapped only at extreme levels of hypoxia and hence are insufficiently sensitive for this purpose. We have therefore sought an analog of (64)Cu-ATSM better suited to identify compromised but salvageable myocardium, and we validated it using parallel biomarkers of cardiac energetics comparable to those observed in chronic cardiac ischemic syndromes. METHODS: Rat hearts were perfused with aerobic buffer for 20 min, followed by a range of hypoxic buffers (using a computer-controlled gas mixer) for 45 min. Contractility was monitored by intraventricular balloon, energetics by (31)P nuclear MR spectroscopy, lactate and creatine kinase release spectrophotometrically, and hypoxia-inducible factor 1-α by Western blotting. RESULTS: We identified a key hypoxia threshold at a 30% buffer O2 saturation that induces a stable and potentially survivable functional and energetic compromise: left ventricular developed pressure was depressed by 20%, and cardiac phosphocreatine was depleted by 65.5% ± 14% (P < 0.05 vs. control), but adenosine triphosphate levels were maintained. Lactate release was elevated (0.21 ± 0.067 mmol/L/min vs. 0.056 ± 0.01 mmol/L/min, P < 0.05) but not maximal (0.46 ± 0.117 mmol/L/min), indicating residual oxidative metabolic capacity. Hypoxia-inducible factor 1-α was elevated but not maximal. At this key threshold, (64)Cu-2,3-pentanedione bis(thiosemicarbazone) (CTS) selectively deposited significantly more (64)Cu than any other tracer we examined (61.8% ± 9.6% injected dose vs. 29.4% ± 9.5% for (64)Cu-ATSM, P < 0.05). CONCLUSION: The hypoxic threshold that induced survivable metabolic and functional compromise was 30% O2. At this threshold, only (64)Cu-CTS delivered a hypoxic-to-normoxic contrast of 3:1, and it therefore warrants in vivo evaluation for imaging chronic cardiac ischemic syndromes.


Asunto(s)
Complejos de Coordinación/química , Radioisótopos de Cobre/química , Corazón/diagnóstico por imagen , Hipoxia/diagnóstico por imagen , Miocardio/patología , Tomografía de Emisión de Positrones , Radiofármacos/química , Tiosemicarbazonas/química , Adenosina Trifosfato/química , Animales , Creatina Quinasa/metabolismo , Humanos , Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Compuestos Organometálicos/química , Ratas , Ratas Wistar
5.
EJNMMI Res ; 4(1): 40, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26055939

RESUMEN

BACKGROUND: The trapping mechanisms of the PET hypoxia imaging agent copper(II)-diacetyl-bis(N (4)-methylthiosemicarbazone) ((64)Cu(ATSM)) remain unresolved, although its reduction prior to dissociation may be mediated by intracellular thiols. Glutathione (GSH) is the most abundant intracellular thiol, and its redox status changes in cancer cells and ischaemic myocardium (two prime applications for (64)Cu(ATSM) PET). We therefore investigated whether modification of intracellular GSH content affects the hypoxia selectivity of (64)Cu(ATSM). METHODS: Isolated rat hearts (n = five per group) were perfused with aerobic buffer (equilibrated with 95%O2/5%CO2) for 15 min, then hypoxic buffer (95%N2/5%CO2) for 20 min. Cardiac glutathione was depleted by buthionine sulphoximine (BSO, 4 mmol/kg/ 48 h intraperitoneal), or augmented by N-acetyl cysteine (NAC, 4 mmol/L) in the perfusion buffer. Cardiac (64)Cu retention from three 2-MBq bolus injections of (64)Cu(ATSM) before and during hypoxia was then monitored by NaI detectors. RESULTS: Cardiac GSH content was elevated by NAC and depleted by BSO (from 7.9 ± 2.0 to 59.3 ± 8.3 nmol/mg and 3.7 ± 1.0 nmol/mg protein, respectively; p < 0.05). Hypoxia did not affect cardiac GSH content in any group. During normoxia, tracer washed out bi-exponentially, with 13.1% ± 1.7% injected dose being retained; this was not affected by GSH augmentation or depletion. Hypoxia significantly increased tracer retention (to 59.1% ± 6.3%, p < 0.05); this effect was not modified by GSH augmentation or depletion. CONCLUSION: Modification of GSH levels had no impact upon the pharmacokinetics or hypoxia selectivity of (64)Cu(ATSM). While thiols may yet prove essential for the intracellular trapping of (64)Cu(ATSM), they are not the determinants of its hypoxia selectivity.

6.
J Nucl Med ; 55(3): 488-94, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24421288

RESUMEN

UNLABELLED: Myocardial hypoxia is an attractive target for diagnostic and prognostic imaging, but current approaches are insufficiently sensitive for clinical use. The PET tracer copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) ((64)Cu-ATSM) has promise, but its selectivity and sensitivity could be improved by structural modification. We have therefore evaluated a range of (64)Cu-ATSM analogs for imaging hypoxic myocardium. METHODS: Isolated rat hearts (n = 5/group) were perfused with normoxic buffer for 30 min and then hypoxic buffer for 45 min within a custom-built triple-γ-detector system to quantify radiotracer infusion, hypoxia-dependent cardiac uptake, and washout. A 1-MBq bolus of each candidate tracer (and (18)F-fluoromisonidazole for comparative purposes) was injected into the arterial line during normoxia, and during early and late hypoxia, and their hypoxia selectivity and pharmacokinetics were evaluated. The in vivo pharmacokinetics of promising candidates in healthy rats were then assessed by PET imaging and biodistribution. RESULTS: All tested analogs exhibited hypoxia sensitivity within 5 min. Complexes less lipophilic than (64)Cu-ATSM provided significant gains in hypoxic-to-normoxic contrast (14:1 for (64)Cu-2,3-butanedione bis(thiosemicarbazone) (ATS), 17:1 for (64)Cu-2,3-pentanedione bis(thiosemicarbazone) (CTS), 8:1 for (64)Cu-ATSM, P < 0.05). Hypoxic first-pass uptake was 78.2% ± 7.2% for (64)Cu-ATS and 70.7% ± 14.5% for (64)Cu-CTS, compared with 63.9% ± 11.7% for (64)Cu-ATSM. Cardiac retention of (18)F-fluoromisonidazole increased from 0.44% ± 0.17% during normoxia to 2.24% ± 0.08% during hypoxia. In vivo, normoxic cardiac retention of (64)Cu-CTS was significantly lower than that of (64)Cu-ATSM and (64)Cu-ATS (0.13% ± 0.02% vs. 0.25% ± 0.04% and 0.24% ± 0.03% injected dose, P < 0.05), with retention of all 3 tracers falling to less than 0.7% injected dose within 6 min. (64)Cu-CTS also exhibited lower uptake in liver and lung. CONCLUSION: (64)Cu-ATS and (64)Cu-CTS exhibit better cardiac hypoxia selectivity and imaging characteristics than the current lead hypoxia tracers, (64)Cu-ATSM and (18)F-fluoromisonidazole.


Asunto(s)
Miocardio/citología , Compuestos Organometálicos/química , Tomografía de Emisión de Positrones , Tiosemicarbazonas/química , Animales , Hipoxia de la Célula , Complejos de Coordinación , Masculino , Compuestos Organometálicos/farmacocinética , Ratas , Ratas Wistar , Tiosemicarbazonas/farmacocinética
7.
Biomaterials ; 34(4): 1179-92, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23131536

RESUMEN

A series of metal-chelating lipid conjugates has been designed and synthesized. Each member of the series bears a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) macrocycle attached to the lipid head group, using short n-ethylene glycol (n-EG) spacers of varying length. Liposomes incorporating these lipids, chelated to Gd(3+), (64)Cu(2+), or (111)In(3+), and also incorporating fluorescent lipids, have been prepared, and their application in optical, magnetic resonance (MR) and single-photon emission tomography (SPECT) imaging of cellular uptake and distribution investigated in vitro and in vivo. We have shown that these multimodal liposomes can be used as functional MR contrast agents as well as radionuclide tracers for SPECT, and that they can be optimized for each application. When shielded liposomes were formulated incorporating 50% of a lipid with a short n-EG spacer, to give nanoparticles with a shallow but even coverage of n-EG, they showed good cellular internalization in a range of tumour cells, compared to the limited cellular uptake of conventional shielded liposomes formulated with 7% 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethyleneglycol)(2000)] (DSPE-PEG2000). Moreover, by matching the depth of n-EG coverage to the length of the n-EG spacers of the DOTA lipids, we have shown that similar distributions and blood half lives to DSPE-PEG2000-stabilized liposomes can be achieved. The ability to tune the imaging properties and distribution of these liposomes allows for the future development of a flexible tri-modal imaging agent.


Asunto(s)
Medios de Contraste/síntesis química , Liposomas , Imagen por Resonancia Magnética/métodos , Microscopía Fluorescente/métodos , Nanocápsulas/química , Tomografía Computarizada de Emisión de Fotón Único/métodos , Liposomas/química , Técnica de Sustracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA