Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(6): 1140-1164, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38776926

RESUMEN

Detection of structural variants (SVs) is currently biased toward those that alter copy number. The relative contribution of inversions toward genetic disease is unclear. In this study, we analyzed genome sequencing data for 33,924 families with rare disease from the 100,000 Genomes Project. From a database hosting >500 million SVs, we focused on 351 genes where haploinsufficiency is a confirmed disease mechanism and identified 47 ultra-rare rearrangements that included an inversion (24 bp to 36.4 Mb, 20/47 de novo). Validation utilized a number of orthogonal approaches, including retrospective exome analysis. RNA-seq data supported the respective diagnoses for six participants. Phenotypic blending was apparent in four probands. Diagnostic odysseys were a common theme (>50 years for one individual), and targeted analysis for the specific gene had already been performed for 30% of these individuals but with no findings. We provide formal confirmation of a European founder origin for an intragenic MSH2 inversion. For two individuals with complex SVs involving the MECP2 mutational hotspot, ambiguous SV structures were resolved using long-read sequencing, influencing clinical interpretation. A de novo inversion of HOXD11-13 was uncovered in a family with Kantaputra-type mesomelic dysplasia. Lastly, a complex translocation disrupting APC and involving nine rearranged segments confirmed a clinical diagnosis for three family members and resolved a conundrum for a sibling with a single polyp. Overall, inversions play a small but notable role in rare disease, likely explaining the etiology in around 1/750 families across heterogeneous clinical cohorts.


Asunto(s)
Inversión Cromosómica , Enfermedades Raras , Humanos , Enfermedades Raras/genética , Masculino , Femenino , Inversión Cromosómica/genética , Linaje , Genoma Humano , Secuenciación Completa del Genoma , Proteína 2 de Unión a Metil-CpG/genética , Mutación , Proteínas de Homeodominio/genética , Persona de Mediana Edad
2.
Mov Disord ; 39(1): 141-151, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37964426

RESUMEN

BACKGROUND: The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3 ) receptor type 1 (IP3 R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. OBJECTIVES: We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. METHODS: Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. RESULTS: We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3 -binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. CONCLUSIONS: This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Aniridia , Anhidrasas Carbónicas , Ataxia Cerebelosa , Discapacidad Intelectual , Trastornos del Movimiento , Degeneraciones Espinocerebelosas , Humanos , Ataxia Cerebelosa/genética , Mutación Missense/genética , Trastornos del Movimiento/complicaciones , Atrofia , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
3.
Am J Hum Genet ; 104(5): 914-924, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982611

RESUMEN

Glypicans are a family of cell-surface heparan sulfate proteoglycans that regulate growth-factor signaling during development and are thought to play a role in the regulation of morphogenesis. Whole-exome sequencing of the Australian family that defined Keipert syndrome (nasodigitoacoustic syndrome) identified a hemizygous truncating variant in the gene encoding glypican 4 (GPC4). This variant, located in the final exon of GPC4, results in premature termination of the protein 51 amino acid residues prior to the stop codon, and in concomitant loss of functionally important N-linked glycosylation (Asn514) and glycosylphosphatidylinositol (GPI) anchor (Ser529) sites. We subsequently identified seven affected males from five additional kindreds with novel and predicted pathogenic variants in GPC4. Segregation analysis and X-inactivation studies in carrier females provided supportive evidence that the GPC4 variants caused the condition. Furthermore, functional studies of recombinant protein suggested that the truncated proteins p.Gln506∗ and p.Glu496∗ were less stable than the wild type. Clinical features of Keipert syndrome included a prominent forehead, a flat midface, hypertelorism, a broad nose, downturned corners of mouth, and digital abnormalities, whereas cognitive impairment and deafness were variable features. Studies of Gpc4 knockout mice showed evidence of the two primary features of Keipert syndrome: craniofacial abnormalities and digital abnormalities. Phylogenetic analysis demonstrated that GPC4 is most closely related to GPC6, which is associated with a bone dysplasia that has a phenotypic overlap with Keipert syndrome. Overall, we have shown that pathogenic variants in GPC4 cause a loss of function that results in Keipert syndrome, making GPC4 the third human glypican to be linked to a genetic syndrome.


Asunto(s)
Sordera/congénito , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Variación Genética , Glipicanos/genética , Deformidades Congénitas de las Extremidades Inferiores/genética , Deformidades Congénitas de las Extremidades Inferiores/patología , Adulto , Niño , Preescolar , Sordera/genética , Sordera/patología , Femenino , Humanos , Lactante , Masculino , Linaje , Fenotipo , Adulto Joven
4.
Am J Hum Genet ; 102(1): 116-132, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290337

RESUMEN

Whole-exome and targeted sequencing of 13 individuals from 10 unrelated families with overlapping clinical manifestations identified loss-of-function and missense variants in KIAA1109 allowing delineation of an autosomal-recessive multi-system syndrome, which we suggest to name Alkuraya-Kucinskas syndrome (MIM 617822). Shared phenotypic features representing the cardinal characteristics of this syndrome combine brain atrophy with clubfoot and arthrogryposis. Affected individuals present with cerebral parenchymal underdevelopment, ranging from major cerebral parenchymal thinning with lissencephalic aspect to moderate parenchymal rarefaction, severe to mild ventriculomegaly, cerebellar hypoplasia with brainstem dysgenesis, and cardiac and ophthalmologic anomalies, such as microphthalmia and cataract. Severe loss-of-function cases were incompatible with life, whereas those individuals with milder missense variants presented with severe global developmental delay, syndactyly of 2nd and 3rd toes, and severe muscle hypotonia resulting in incapacity to stand without support. Consistent with a causative role for KIAA1109 loss-of-function/hypomorphic variants in this syndrome, knockdowns of the zebrafish orthologous gene resulted in embryos with hydrocephaly and abnormally curved notochords and overall body shape, whereas published knockouts of the fruit fly and mouse orthologous genes resulted in lethality or severe neurological defects reminiscent of the probands' features.


Asunto(s)
Artrogriposis/genética , Encéfalo/embriología , Mutación/genética , Proteínas/genética , Adolescente , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Linaje , Pez Cebra , Proteínas de Pez Cebra/genética
5.
Kidney Int ; 98(6): 1589-1604, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32750457

RESUMEN

There have been few clinical or scientific reports of autosomal dominant tubulointerstitial kidney disease due to REN mutations (ADTKD-REN), limiting characterization. To further study this, we formed an international cohort characterizing 111 individuals from 30 families with both clinical and laboratory findings. Sixty-nine individuals had a REN mutation in the signal peptide region (signal group), 27 in the prosegment (prosegment group), and 15 in the mature renin peptide (mature group). Signal group patients were most severely affected, presenting at a mean age of 19.7 years, with the prosegment group presenting at 22.4 years, and the mature group at 37 years. Anemia was present in childhood in 91% in the signal group, 69% prosegment, and none of the mature group. REN signal peptide mutations reduced hydrophobicity of the signal peptide, which is necessary for recognition and translocation across the endoplasmic reticulum, leading to aberrant delivery of preprorenin into the cytoplasm. REN mutations in the prosegment led to deposition of prorenin and renin in the endoplasmic reticulum-Golgi intermediate compartment and decreased prorenin secretion. Mutations in mature renin led to deposition of the mutant prorenin in the endoplasmic reticulum, similar to patients with ADTKD-UMOD, with a rate of progression to end stage kidney disease (63.6 years) that was significantly slower vs. the signal (53.1 years) and prosegment groups (50.8 years) (significant hazard ratio 0.367). Thus, clinical and laboratory studies revealed subtypes of ADTKD-REN that are pathophysiologically, diagnostically, and clinically distinct.


Asunto(s)
Anemia , Enfermedades Renales Poliquísticas , Adulto , Niño , Estudios de Cohortes , Femenino , Humanos , Masculino , Mutación , Enfermedades Renales Poliquísticas/genética , Renina/genética , Adulto Joven
6.
Am J Med Genet A ; 182(6): 1426-1437, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32275123

RESUMEN

Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is an autosomal dominant neurodevelopmental disorder caused by loss-of-function variants in NR2F1 and characterized by visual impairment, developmental delay, and intellectual disability. Here we report 18 new cases, provide additional clinical information for 9 previously reported individuals, and review an additional 27 published cases to present a total of 54 patients. Among these are 22 individuals with point mutations or in-frame deletions in the DNA-binding domain (DBD), and 32 individuals with other types of variants including whole-gene deletions, nonsense and frameshift variants, and point mutations outside the DBD. We corroborate previously described clinical characteristics including developmental delay, intellectual disability, autism spectrum disorder diagnoses/features thereof, cognitive/behavioral anomalies, hypotonia, feeding difficulties, abnormal brain MRI findings, and seizures. We also confirm a vision phenotype that includes optic nerve hypoplasia, optic atrophy, and cortical visual impairment. Additionally, we expand the vision phenotype to include alacrima and manifest latent nystagmus (fusional maldevelopment), and we broaden the behavioral phenotypic spectrum to include a love of music, an unusually good long-term memory, sleep difficulties, a high pain tolerance, and touch sensitivity. Furthermore, we provide additional evidence for genotype-phenotype correlations, specifically supporting a more severe phenotype associated with DBD variants.


Asunto(s)
Factor de Transcripción COUP I/genética , Discapacidad Intelectual/genética , Atrofias Ópticas Hereditarias/genética , Convulsiones/genética , Codón sin Sentido/genética , Proteínas de Unión al ADN , Femenino , Mutación del Sistema de Lectura/genética , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/fisiopatología , Masculino , Mutación/genética , Atrofias Ópticas Hereditarias/complicaciones , Atrofias Ópticas Hereditarias/fisiopatología , Mutación Puntual/genética , Convulsiones/complicaciones , Convulsiones/fisiopatología
7.
Hum Mutat ; 39(9): 1226-1237, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29897170

RESUMEN

Malan syndrome is an overgrowth disorder described in a limited number of individuals. We aim to delineate the entity by studying a large group of affected individuals. We gathered data on 45 affected individuals with a molecularly confirmed diagnosis through an international collaboration and compared data to the 35 previously reported individuals. Results indicate that height is > 2 SDS in infancy and childhood but in only half of affected adults. Cardinal facial characteristics include long, triangular face, macrocephaly, prominent forehead, everted lower lip, and prominent chin. Intellectual disability is universally present, behaviorally anxiety is characteristic. Malan syndrome is caused by deletions or point mutations of NFIX clustered mostly in exon 2. There is no genotype-phenotype correlation except for an increased risk for epilepsy with 19p13.2 microdeletions. Variants arose de novo, except in one family in which mother was mosaic. Variants causing Malan and Marshall-Smith syndrome can be discerned by differences in the site of stop codon formation. We conclude that Malan syndrome has a well recognizable phenotype that usually can be discerned easily from Marshall-Smith syndrome but rarely there is some overlap. Differentiation from Sotos and Weaver syndrome can be made by clinical evaluation only.


Asunto(s)
Anomalías Múltiples/genética , Hipotiroidismo Congénito/genética , Anomalías Craneofaciales/genética , Deformidades Congénitas de la Mano/genética , Discapacidad Intelectual/genética , Factores de Transcripción NFI/genética , Síndrome de Sotos/genética , Anomalías Múltiples/fisiopatología , Adolescente , Adulto , Enfermedades del Desarrollo Óseo/genética , Enfermedades del Desarrollo Óseo/fisiopatología , Niño , Preescolar , Deleción Cromosómica , Hipotiroidismo Congénito/fisiopatología , Anomalías Craneofaciales/fisiopatología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/fisiopatología , Exones/genética , Femenino , Deformidades Congénitas de la Mano/fisiopatología , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Megalencefalia/genética , Megalencefalia/fisiopatología , Mutación Missense/genética , Fenotipo , Displasia Septo-Óptica/genética , Displasia Septo-Óptica/fisiopatología , Síndrome de Sotos/fisiopatología , Adulto Joven
8.
Pediatr Res ; 81(4): 632-638, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27855150

RESUMEN

BACKGROUND: The aim was to identify susceptibility alleles for infantile hypertrophic pyloric stenosis (IHPS) in a pedigree previously linked to IHPS5 on chromosome 16q24. METHODS: We screened the positional and functional candidate gene FOXF1 by Sanger sequencing in a single affected individual. All family members for whom DNA was available were genotyped to determine cosegregation status of the putative causal variant. Immunofluorescence studies were performed to compare the cellular localization of wildtype and mutant form of the protein. Transcriptional activity was compared using a luciferase assay. RESULTS: A single novel substitution in FOXF1 (c.416G>A) predicted to result in a missense mutation (R139Q) was shown to cosegregate with disease trait. It was not seen in 560 control chromosomes nor has it been reported in ExAC or ESP. The R139Q substitution affects a conserved arginine residue within the DNA-binding domain of FOXF1. The transcriptional activity of the mutant FOXF1 protein is significantly reduced in comparison to wild-type. CONCLUSION: These results provide strong evidence that the R139Q substitution in FOXF1 causes IHPS in this family and imply a novel pathological pathway for the condition. They further support a role for FOXF1 in the regulation of embryonic and neonatal development of the gastro-intestinal tract.


Asunto(s)
Cromosomas Humanos Par 16 , Factores de Transcripción Forkhead/genética , Mutación Missense , Estenosis Hipertrófica del Piloro/genética , Alelos , Arginina/química , Mapeo Cromosómico , Femenino , Variación Genética , Genotipo , Células HEK293 , Haplotipos , Células Hep G2 , Humanos , Masculino , Microscopía Fluorescente , Linaje , Estenosis Hipertrófica del Piloro/metabolismo , Análisis de Secuencia de ADN , Activación Transcripcional
9.
BMC Nephrol ; 18(1): 234, 2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28701203

RESUMEN

BACKGROUND: Heterozygous mutations in the gene encoding renin (REN) cause autosomal dominant tubulointerstitial kidney disease (ADTKD), early-onset anaemia and hyperuricaemia; only four different mutations have been described in the published literature to date. We report a novel dominant REN mutation discovered in an individual after forty years of renal disease. CASE PRESENTATION: A 57 year old Caucasian woman with chronic kidney disease stage five was reviewed in a regional joint renal genetics clinic. She had initially been diagnosed with chronic pyelonephritis in adolescence, around the same time that she was investigated for anaemia out of keeping with her degree of renal impairment. Hyperuricaemia was identified in her twenties following an episode of gout. A diagnosis of ADTKD was not made until the age of 37 years, when her mother was also found to have kidney disease and commenced haemodialysis. The patient's renal function continued to slowly deteriorate and, twenty years later, her sister was worked up as a potential donor for kidney transplantation. Revisiting the maternal family history during the transplant work up prompted a referral to clinical genetics and urgent REN genetic testing was requested for the patient, leading to discovery of a heterozygous mutation in the REN gene: c.49 T > C, p.(Trp17Arg). This variant was not identified in her otherwise healthy sister, allowing pre-emptive live renal transplantation to take place shortly afterwards. CONCLUSIONS: In an era where genetic testing is becoming much more readily available, this case highlights the importance of considering a genetic aetiology in all patients with long-standing renal disease and a relevant family history. Establishing a genetic diagnosis of ADTKD-REN in this individual with chronic anaemia, hyperuricaemia and slowly progressive renal impairment helped to identify a suitable live kidney donor and allowed successful pre-emptive transplantation to take place.


Asunto(s)
Mutación/genética , Nefritis Intersticial/diagnóstico , Nefritis Intersticial/genética , Renina/genética , Secuencia de Aminoácidos , Femenino , Humanos , Trasplante de Riñón , Persona de Mediana Edad , Nefritis Intersticial/cirugía , Linaje , Factores de Tiempo
10.
Kidney Int ; 90(1): 203-11, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27234567

RESUMEN

Heterozygous mutations of the HNF1B gene are the commonest known monogenic cause of developmental kidney disease. Half of patients have a deletion (approximately 1.3 Mb) of chromosome 17q12, encompassing HNF1B plus 14 additional genes. This 17q12 deletion has been linked with an increased risk of neurodevelopmental disorders, such as autism. Here we compared the neurodevelopmental phenotype of 38 patients with HNF1B-associated renal disease due to an intragenic mutation in 18 patients or due to 17q12 deletion in 20 patients to determine whether haploinsufficiency of HNF1B is responsible for the neurodevelopmental phenotype. Significantly, brief behavioral screening in children with the deletion showed high levels of psychopathology and its impact. Eight individuals (40%) with a deletion had a clinical diagnosis of a neurodevelopmental disorder compared to none with an intragenic mutation. The 17q12 deletions were also associated with more autistic traits. Two independent clinical geneticists were able to predict the presence of a deletion with a sensitivity of 83% and specificity of 79% when assessing facial dysmorphic features as a whole. Thus, the 17q12 deletions but not HNF1B intragenic mutations are associated with neurodevelopmental disorders. Hence, the HNF1B gene is not involved in the neurodevelopmental phenotype of these patients. Nephrologists need to be aware of this association to ensure appropriate referral to psychiatric services.


Asunto(s)
Cromosomas Humanos Par 17/genética , Factor Nuclear 1-beta del Hepatocito/genética , Enfermedades Renales/genética , Trastornos del Neurodesarrollo/genética , Eliminación de Secuencia/genética , Adolescente , Adulto , Secuencia de Bases/genética , Niño , Femenino , Haploinsuficiencia , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Mutación , Fenotipo , Derivación y Consulta , Adulto Joven
11.
Nat Genet ; 38(9): 1032-7, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16906163

RESUMEN

Recently, the application of array-based comparative genomic hybridization (array CGH) has improved rates of detection of chromosomal imbalances in individuals with mental retardation and dysmorphic features. Here, we describe three individuals with learning disability and a heterozygous deletion at chromosome 17q21.3, detected in each case by array CGH. FISH analysis demonstrated that the deletions occurred as de novo events in each individual and were between 500 kb and 650 kb in size. A recently described 900-kb inversion that suppresses recombination between ancestral H1 and H2 haplotypes encompasses the deletion. We show that, in each trio, the parent of origin of the deleted chromosome 17 carries at least one H2 chromosome. This region of 17q21.3 shows complex genomic architecture with well-described low-copy repeats (LCRs). The orientation of LCRs flanking the deleted segment in inversion heterozygotes is likely to facilitate the generation of this microdeletion by means of non-allelic homologous recombination.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 17 , Discapacidades del Desarrollo/genética , Discapacidades para el Aprendizaje/genética , Proteínas tau/genética , Adolescente , Adulto , Preescolar , Inversión Cromosómica , Femenino , Marcadores Genéticos , Haplotipos , Heterocigoto , Humanos , Hibridación Fluorescente in Situ , Masculino , Hibridación de Ácido Nucleico , Mapeo Físico de Cromosoma , Polimorfismo de Nucleótido Simple , Secuencias Repetitivas de Ácidos Nucleicos
13.
J Biol Chem ; 286(24): 21393-400, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21515671

RESUMEN

Primary microcephaly is an autosomal recessive disorder characterized by marked reduction in human brain size. Microcephalin (MCPH1), one of the genes mutated in primary microcephaly, plays an important role in DNA damage checkpoint control and mitotic entry. Additionally, MCPH1 ensures the proper temporal activation of chromosome condensation during mitosis, by acting as a negative regulator of the condensin II complex. We previously found that deletion of the of the MCPH1 N terminus leads to the premature chromosome condensation (PCC) phenotype. In the present study, we unexpectedly observed that a truncated form of MCPH1 appears to be expressed in MCPH1(S25X/S25X) patient cells. This likely results from utilization of an alternative translational start codon, which would produce a mutant MCPH1 protein with a small deletion of its N-terminal BRCT domain. Furthermore, missense mutations in the MCPH1 cluster at its N terminus, suggesting that intact function of this BRCT protein-interaction domain is required both for coordinating chromosome condensation and human brain development. Subsequently, we identified the SET nuclear oncogene as a direct binding partner of the MCPH1 N-terminal BRCT domain. Cells with SET knockdown exhibited abnormal condensed chromosomes similar to those observed in MCPH1-deficient mouse embryonic fibroblasts. Condensin II knockdown rescued the abnormal chromosome condensation phenotype in SET-depleted cells. In addition, MCPH1 V50G/I51V missense mutations, impair binding to SET and fail to fully rescue the abnormal chromosome condensation phenotype in Mcph1(-/-) mouse embryonic fibroblasts. Collectively, our findings suggest that SET is an important regulator of chromosome condensation/decondensation and that disruption of the MCPH1-SET interaction might be important for the pathogenesis of primary microcephaly.


Asunto(s)
Cromosomas/metabolismo , Regulación de la Expresión Génica , Chaperonas de Histonas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Ciclo Celular , Codón Iniciador , Proteínas del Citoesqueleto , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN , Fibroblastos/metabolismo , Humanos , Ratones , Mutación , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , ARN Interferente Pequeño/metabolismo
14.
Am J Hum Genet ; 84(6): 780-91, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19500772

RESUMEN

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare, neonatally lethal developmental disorder of the lung with defining histologic abnormalities typically associated with multiple congenital anomalies (MCA). Using array CGH analysis, we have identified six overlapping microdeletions encompassing the FOX transcription factor gene cluster in chromosome 16q24.1q24.2 in patients with ACD/MPV and MCA. Subsequently, we have identified four different heterozygous mutations (frameshift, nonsense, and no-stop) in the candidate FOXF1 gene in unrelated patients with sporadic ACD/MPV and MCA. Custom-designed, high-resolution microarray analysis of additional ACD/MPV samples revealed one microdeletion harboring FOXF1 and two distinct microdeletions upstream of FOXF1, implicating a position effect. DNA sequence analysis revealed that in six of nine deletions, both breakpoints occurred in the portions of Alu elements showing eight to 43 base pairs of perfect microhomology, suggesting replication error Microhomology-Mediated Break-Induced Replication (MMBIR)/Fork Stalling and Template Switching (FoSTeS) as a mechanism of their formation. In contrast to the association of point mutations in FOXF1 with bowel malrotation, microdeletions of FOXF1 were associated with hypoplastic left heart syndrome and gastrointestinal atresias, probably due to haploinsufficiency for the neighboring FOXC2 and FOXL1 genes. These differences reveal the phenotypic consequences of gene alterations in cis.


Asunto(s)
Displasia Broncopulmonar/genética , Cromosomas Humanos Par 16/genética , Factores de Transcripción Forkhead/genética , Eliminación de Gen , Silenciador del Gen , Mutación/genética , Alveolos Pulmonares/patología , Anomalías Múltiples/genética , Capilares/anomalías , Preescolar , Mapeo Cromosómico , Doxorrubicina/análogos & derivados , Femenino , Humanos , Hibridación Fluorescente in Situ , Lactante , Recién Nacido , Masculino , Alveolos Pulmonares/irrigación sanguínea , Venas Pulmonares/anomalías
15.
Am J Med Genet A ; 158A(12): 3087-100, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23165726

RESUMEN

VACTERL association (sometimes termed "VATER association" depending on which component features are included) is typically defined by the presence of at least three of the following congenital malformations, which tend to statistically co-occur in affected individuals: Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula, Renal anomalies, and Limb abnormalities. Although the clinical criteria for VACTERL association may appear to be straightforward, there is wide variability in the way clinical geneticists define the disorder and the genetic testing strategy they use when confronted with an affected patient. In order to describe this variability and determine the most commonly used definitions and testing modalities, we present the results of survey responses by 121 clinical geneticists. We discuss the results of the survey responses, provide a literature review and commentary from a group of physicians who are currently involved in clinical and laboratory-based research on VACTERL association, and offer an algorithm for genetic testing in patients with this association.


Asunto(s)
Ano Imperforado/diagnóstico , Ano Imperforado/genética , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Canal Anal/anomalías , Recolección de Datos , Esófago/anomalías , Anemia de Fanconi/diagnóstico , Pruebas Genéticas/métodos , Genética/normas , Humanos , Riñón/anomalías , Radio (Anatomía)/anomalías , Columna Vertebral/anomalías , Tráquea/anomalías
16.
Pediatr Diabetes ; 13(4): 314-21, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22369132

RESUMEN

Permanent neonatal diabetes mellitus (PNDM) is diagnosed within the first 6 months of life, and is usually monogenic in origin. Heterozygous mutations in ABCC8, KCNJ11, and INS genes account for around half of cases of PNDM; mutations in 10 further genes account for a further 10%, and the remaining 40% of cases are currently without a molecular genetic diagnosis. Thiamine-responsive megaloblastic anaemia (TRMA), due to mutations in the thiamine transporter SLC19A2, is associated with the classical clinical triad of diabetes, deafness, and megaloblastic anaemia. Diabetes in this condition is well described in infancy but has only very rarely been reported in association with neonatal diabetes. We used a combination of homozygosity mapping and evaluation of clinical information to identify cases of TRMA from our cohort of patients with PNDM. Homozygous mutations in SLC19A2 were identified in three cases in which diabetes presented in the first 6 months of life, and a further two cases in which diabetes presented between 6 and 12 months of age. We noted the presence of a significant neurological disorder in four of the five cases in our series, prompting us to examine the incidence of these and other non-classical clinical features in TRMA. From 30 cases reported in the literature, we found significant neurological deficit (stroke, focal, or generalized epilepsy) in 27%, visual system disturbance in 43%, and cardiac abnormalities in 27% of cases. TRMA should be considered in the differential diagnosis of diabetes presenting in the neonatal period.


Asunto(s)
Anemia Megaloblástica/genética , Diabetes Mellitus/genética , Enfermedades del Recién Nacido/genética , Proteínas de Transporte de Membrana/genética , Tiamina/uso terapéutico , Anemia Megaloblástica/tratamiento farmacológico , Consanguinidad , Sordera/complicaciones , Sordera/genética , Genes Recesivos/genética , Homocigoto , Humanos , Lactante , Recién Nacido , Síndrome
17.
J Med Genet ; 48(3): 197-204, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21278390

RESUMEN

BACKGROUND: Congenital malformations involving the Müllerian ducts are observed in around 5% of infertile women. Complete aplasia of the uterus, cervix, and upper vagina, also termed Müllerian aplasia or Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome, occurs with an incidence of around 1 in 4500 female births, and occurs in both isolated and syndromic forms. Previous reports have suggested that a proportion of cases, especially syndromic cases, are caused by variation in copy number at different genomic loci. METHODS: In order to obtain an overview of the contribution of copy number variation to both isolated and syndromic forms of Müllerian aplasia, copy number assays were performed in a series of 63 cases, of which 25 were syndromic and 38 isolated. RESULTS: A high incidence (9/63, 14%) of recurrent copy number variants in this cohort is reported here. These comprised four cases of microdeletion at 16p11.2, an autism susceptibility locus not previously associated with Müllerian aplasia, four cases of microdeletion at 17q12, and one case of a distal 22q11.2 microdeletion. Microdeletions at 16p11.2 and 17q12 were found in 4/38 (10.5%) cases with isolated Müllerian aplasia, and at 16p11.2, 17q12 and 22q11.2 (distal) in 5/25 cases (20%) with syndromic Müllerian aplasia. CONCLUSION: The finding of microdeletion at 16p11.2 in 2/38 (5%) of isolated and 2/25 (8%) of syndromic cases suggests a significant contribution of this copy number variant alone to the pathogenesis of Müllerian aplasia. Overall, the high incidence of recurrent copy number variants in all forms of Müllerian aplasia has implications for the understanding of the aetiopathogenesis of the condition, and for genetic counselling in families affected by it.


Asunto(s)
Trastornos del Desarrollo Sexual 46, XX , Anomalías Múltiples , Deleción Cromosómica , Anomalías Congénitas , Variaciones en el Número de Copia de ADN , Trastornos del Desarrollo Sexual 46, XX/epidemiología , Trastornos del Desarrollo Sexual 46, XX/genética , Anomalías Múltiples/epidemiología , Anomalías Múltiples/genética , Adolescente , Adulto , Estudios de Cohortes , Anomalías Congénitas/epidemiología , Anomalías Congénitas/genética , Femenino , Pruebas Genéticas , Humanos , Incidencia , Riñón/anomalías , Conductos Paramesonéfricos/anomalías , Somitos/anomalías , Columna Vertebral/anomalías , Síndrome , Útero/anomalías , Vagina/anomalías , Adulto Joven
18.
Pediatr Crit Care Med ; 12(6): e427-32, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21572369

RESUMEN

OBJECTIVE: Report of a 16q24.1 deletion in a premature newborn, demonstrating the usefulness of array-based comparative genomic hybridization in persistent pulmonary hypertension of the newborn and multiple congenital malformations. DESIGN: Descriptive case report. SETTING: Genetic department and neonatal intensive care unit of a tertiary care children's hospital. INTERVENTIONS: None. PATIENT: We report the case of a preterm male infant, born at 26 wks of gestation. A cardiac malformation and bilateral hydronephrosis were diagnosed at 19 wks of gestation. Karyotype analysis was normal, and a 22q11.2 microdeletion was excluded by fluorescence in situ hybridization analysis. A cesarean section was performed due to fetal distress. The patient developed persistent pulmonary hypertension unresponsive to mechanical ventilation and nitric oxide treatment and expired at 16 hrs of life. MEASUREMENTS AND MAIN RESULTS: An autopsy revealed partial atrioventricular canal malformation and showed bilateral dilation of the renal pelvocaliceal system with bilateral ureteral stenosis and annular pancreas. Array-based comparative genomic hybridization analysis (Agilent oligoNT 44K, Agilent Technologies, Santa Clara, CA) showed an interstitial microdeletion encompassing the forkhead box gene cluster in 16q24.1. Review of the pulmonary microscopic examination showed the characteristic features of alveolar capillary dysplasia with misalignment of pulmonary veins. Some features were less prominent due to the gestational age. CONCLUSIONS: Our review of the literature shows that alveolar capillary dysplasia with misalignment of pulmonary veins is rare but probably underreported. Prematurity is not a usual presentation, and histologic features are difficult to interpret. In our case, array-based comparative genomic hybridization revealed a 16q24.1 deletion, leading to the final diagnosis of alveolar capillary dysplasia with misalignment of pulmonary veins. It emphasizes the usefulness of array-based comparative genomic hybridization analysis as a diagnostic tool with implications for both prognosis and management decisions in newborns with refractory persistent pulmonary hypertension and multiple congenital malformations.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 16/genética , Hipertensión Pulmonar/patología , Síndrome de Circulación Fetal Persistente/patología , Venas Pulmonares/anomalías , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Hibridación Genómica Comparativa , Humanos , Recién Nacido , Cariotipo , Masculino , Síndrome de Circulación Fetal Persistente/genética , Alveolos Pulmonares/anomalías , Alveolos Pulmonares/patología
19.
HGG Adv ; 2(1): 100015, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33537682

RESUMEN

Histone deacetylases play crucial roles in the regulation of chromatin structure and gene expression in the eukaryotic cell, and disruption of their activity causes a wide range of developmental disorders in humans. Loss-of-function alleles of HDAC4, a founding member of the class IIa deacetylases, have been reported in brachydactyly-mental retardation syndrome (BDMR). However, while disruption of HDAC4 activity and deregulation of its downstream targets may contribute to the BDMR phenotype, loss of HDAC4 function usually occurs as part of larger deletions of chromosome 2q37; BDMR is also known as chromosome 2q37 deletion syndrome, and the precise role of HDAC4 within the phenotype remains uncertain. Thus, identification of missense variants should shed new light on the role of HDAC4 in normal development. Here, we report seven unrelated individuals with a phenotype distinct from that of BDMR, all of whom have heterozygous de novo missense variants that affect a major regulatory site of HDAC4, required for signal-dependent 14-3-3 binding and nucleocytoplasmic shuttling. Two individuals possess variants altering Thr244 or Glu247, whereas the remaining five all carry variants altering Pro248, a key residue for 14-3-3 binding. We propose that the variants in all seven individuals impair 14-3-3 binding (as confirmed for the first two variants by immunoprecipitation assays), thereby identifying deregulation of HDAC4 as a pathological mechanism in a previously uncharacterized developmental disorder.

20.
Pediatr Surg Int ; 26(8): 769-81, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20549505

RESUMEN

Intestinal malrotation is well covered in the surgical literature from the point of view of operative management, but few reviews to date have attempted to provide a comprehensive examination of the topic from the point of view of aetiology, in particular genetic aetiology. Following a brief overview of molecular embryology of midgut rotation, we present in this article instances of and case reports and case series of intestinal malrotation in which a genetic aetiology is likely. Autosomal dominant, autosomal recessive, X-linked and chromosomal forms of the disorder are represented. Most occur in syndromic form, that is to say, in association with other malformations. In many instances, recognition of a specific syndrome is possible, one of several examples discussed being the recently described association of intestinal malrotation with alveolar capillary dysplasia, due to mutations in the forkhead box transcription factor FOXF1. New advances in sequencing technology mean that the identification of the genes mutated in these disorders is more accessible than ever, and paediatric surgeons are encouraged to refer to their colleagues in clinical genetics where a genetic aetiology seems likely.


Asunto(s)
Anomalías del Sistema Digestivo/genética , Factores de Transcripción Forkhead/genética , Intestinos/anomalías , Receptores de Activinas Tipo II/genética , Proteínas Contráctiles/genética , Filaminas , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Humanos , Recién Nacido , Péptidos y Proteínas de Señalización Intercelular/genética , Intestinos/embriología , Factores de Determinación Derecha-Izquierda/genética , Proteínas de Microfilamentos/genética , Mutación , Factores de Riesgo , Síndrome , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA